VI. PRESENTE Y PASADO DE LAS PLACAS TERRESTRES

AUNQUE se necesita aún cantidad de estudios para conocer en detalle la forma, el tamaño, la velocidad y la dirección de cada una de las placas litosféricas, se cuenta ya con un modelo aceptable del panorama actual del proceso para las principales placas, el cual veremos en este capítulo.

Desgraciadamente, no podemos elaborar un modelo igualmente aceptable para el pasado. Sabemos que algunas placas desaparecen del todo y el único rastro de su existencia es la forma en que haya podido influir la formación, destrucción o deformación de otras placas que podamos aún observar y relacionar con ella. La juventud de la corteza oceánica hace que sólo encontremos huellas de tectonismo muy antiguo en los continentes, y éstas generalmente pueden interpretarse de distintas maneras igualmente aceptables; por lo tanto el panorama se hace más difuso conforme más retrocedemos en el tiempo.

VI.1. LAS PRINCIPALES PLACAS TERRESTRES

La figura 24 muestra las principales placas según se encuentran en la actualidad, los centros de expansión se representan mediante líneas dobles, las zonas de subducción con líneas dentadas (los dientes, colocados sobre la placa que subduce, indican hacia dónde es subducida la otra), las fallas transformes por líneas continuas con un par de flechas que indica cómo es el desplazamiento relativo, y las zonas de sutura continental van sombreadas.

Las principales placas son: Africana, Antártica, Arábiga, del Caribe, de Cocos, Euroasiática, de Filipinas, Indoaustraliana, Norteamericana, Sudamericana y del Pacífico. Existen placas muy pequeñas, llamadas microplacas, como la de Farallón y la de Rivera (indicadas por F y R, respectivamente, en la figura), pero no todas están bien identificadas aún. La figura 46 muestra un mapa de la placa Antártica que aparece distorsionada en la figura anterior debido a la proyección.

[FNT 47]

Figura 46.

La figura 47 muestra los polos de Euler (rodeados de elipses que indican el posible error en su determinación) para cada par de placas principales, obtenidos por J. Minster y T. Jordan en 1978. En la figura, las placas están identificadas por AFRC, ANTA, ARAB, CARB, COCO, EURA, Filipinas está integrada a Pacífico, INDI, NOAM, SOAM y PCFC, respectivamente.

[FNT 48]

Figura 47.

En la figura 48 se indica el movimiento actual (desde hace 10 Ma hasta el presente) de las principales placas según H. Gordon y J. Gurdy, las flechas indican la dirección de movimiento y su tamaño, proporcional a la velocidad, muestra la distancia que recorrería el punto de la placa correspondiente en 15 Ma. Las velocidades están referidas al sistema de puntos calientes, que será discutido en el capítulo VIII, y que puede considerarse como "quieto".

[FNT 49]

Figura 48.

Si comparamos la distribución mundial de epicentros (Figura 8) con las figuras 24 ó 48, vemos inmediatamente que las franjas sísmicas corresponden, en su gran mayoría y de forma impresionante, con las fronteras entre las placas. Esto no debe ser sorprendente, pues ya vimos cómo cada tipo de interacción entre placas produce sismos.

Hasta hace poco se pensaba que ambas placas americanas formaban una sola, pero el ajuste de todas las velocidades relativas de las placas requiere que éstas se muevan por separado. La diferencia de velocidades entre ambas placas es pequeña, por lo que no hay gran sismicidad que defina su frontera; ésta puede estar a lo largo de alguna (o varias) de las múltiples fracturas cercanas a la región del Caribe, posiblemente alrededor del paralelo 15° N y las dorsales de Barracuda y del Investigador en la zona de fractura de Verma. La posición de la posible frontera se indica por líneas punteadas y mi signo de interrogación en la figura 24.

Aunque la interacción entre placas es la principal causa de los sismos, no es la única. Cualquier proceso que pueda lograr grandes concentraciones de esfuerzo en las rocas puede generar sismos, cuyo tamaño dependerá, entre otros factores, de qué tan grande sea la zona de concentración de esfuerzo. Por ejemplo, el propio peso de las montañas es una fuerza enorme que tiende a aplanarlas y que puede producir sismos al ocasionar deslizamientos a lo largo de fallas. Generalmente estos sismos no son de gran magnitud, por lo que, aunque pueden ser registrados localmente, rara vez son lo suficientemente grandes para ser registrados en la red mundial.

Sin embargo, si continuamos con la comparación sugerida antes, vemos que existen regiones de alta sismicidad que no coinciden con las sencillas fronteras que hemos indicado. Si se observan estudios de sismicidad local, los cuales incluyen sismos de menor magnitud que los reportados mundialmente, la distribución de la sismicidad se vuelve más nítida en algunos casos (aquellos donde la interacción entre placas es sencilla) y más difusa en otros.

Algunas de las zonas de sismicidad difusa, como las que se encuentran cerca de las islas Filipinas, en los extremos occidental y oriental del Mediterráneo, y en el extremo noroccidental de Sudamérica, son regiones donde es posible la presencia de microplacas aún no bien documentadas. Como ejemplo podemos considerar la región Ibero-Mogrebi del Sur de España y Nornoroeste de África, que es difusa a ambos lados del mediterráneo y ha sido interpretada por A. Udías como indicación de la interacción de la placa africana con varias microplacas en el Estrecho de Gibraltar y el Sur de la Península Ibérica, en tanto que el resto de esta última tiene movimiento propio distinto del resto de la placa euroasiática, según evidencia la sismicidad en los Pirineos.

Existen también regiones de sismicidad primordialmente somera en los continentes (comparar también con la figura 8) que definitivamente no corresponden a ninguna frontera entre placas, como por ejemplo en África oriental y en la parte suroccidental de EUA al este del sistema de fallas de San Andrés que marca la frontera entre las placas del Pacífico y de Norteamérica a esa latitud. El mecanismo de los sismos que ocurren en estas regiones indica esfuerzos tensionales y en ellas se ha detectado gran flujo de calor, lo que indica que posiblemente sean futuros centros de expansión; hablaremos un poco más a este respecto en el capítulo VIII.

A continuación nombraremos las principales fronteras entre placas mostradas en la figura 24 (excepto las referentes a México y sus regiones vecinas, que serán vistas después con un poco más de detalle). Nótese que los estudios en detalle de alguna zona asignan a menudo nombres especiales a cada parte del rasgo tectónico estudiado, por lo que a veces los nombres no concuerdan; por ejemplo, Trinchera de Acapulco, de Oaxaca, de Guatemala, etc., se refieren a partes de la Trinchera Mesoamericana.

Las cordilleras son: Cordillera Mesoatlántica (CMA), cuya sección cercana a Islandia se conoce como Cordillera de Rejkyanes (CR). Por cierto que Islandia se encuentra sobre la cordillera Mesoatlántica y está siendo partida en dos; la presencia de este centro de expansión hace que tenga cantidad de zonas geotérmicas (aprovechadas como fuente de energía por los islandeses) y mucho vulcanismo (Figura 22).

La cordillera de Carlsberg (CCA) separa la placa africana de la indoaustraliana, termina al sur en un punto triple donde se une con las del Océano Indico Medio (COIM) y la Antártico-Africana (CA-A). Estas dos, la Antártico-Pacífico (CA-P) y la de Chile (o Chile Austral) (CCH) rodean casi completamente a la placa de la Antártica (Figura 46).

En la cordiIlera del Pacífico Oriental (CPO) se separa la placa del Pacífico de las de Rivera, de Cocos y de Nazca, y éstas dos últimas, a su vez, están separadas por la cordillera Galápagos (CGA). La placa del Pacífico se separa de la microplaca de Farallón en las crestas de Juan de Fuca (CJF) y Gorda (CGO).

Las crestas que apenas están naciendo y, a veces, las que constan de muchos centros de expansión unidos por fallas transformes largas son llamadas zonas de ruptura (como las de las crestas oceánicas). Éste es el caso de las zonas de ruptura del Mar de Cortés (que veremos en detalle después), del Mar Rojo (RMR) y del Golfo de Aden (RGA). Estas dos se muestran en detalle en la figura 49; hay lineamientos magnéticos en el Golfo de Aden, pero la sedimentación en el Mar Rojo es tan rápida que cubre todo el fondo, pero en éste se encuentran lugares de donde surgen salmueras muy calientes que evidencian los centros de expansión. En esta zona hay, aparentemente, una microplaca llamada de Danakil, y es posible que la Península del Sinaí forme otra.

Nótese que si no existiera el Triángulo de Afar, el ajuste entre las costas arábiga y africana sería casi perfecto. El Triángulo de Afar está formado por rocas volcánicas muy recientes, lo que indica que se formó más o menos al mismo tiempo que comenzó la separación de las placas africana y arábiga. La zona de sismicidad anómala de África oriental mencionada arriba comienza justamente en el Triángulo de Afar y se continúa a lo largo de una serie de grabens conocidos como Valles de ruptura de África. Estos pueden indicar el comienzo de una nueva cordillera oceánica que partiría la placa de África en las placas de Nubia y de Somalia.

Las principales trincheras cuyos nombres no aparecen completos por falta de lugar en la figura 24 son: Trinchera Helénica (o Jónica) (TH), de Chipre (TC), de Omán (TO), de Nuevas Hébridas (TNH), de Nueva Bretaña (TNB), We-ber (TW), de Filipinas (TF), de Manila (TM), Nansei-Shoto (TN-S), Kuriles-Kamchatka (TK-K), Sandwich del Sur (TSS), Puerto Rico (TPR.), Mesoamericana (TMA).

La sismicidad difusa en la región alrededor de las trincheras de Manila, Filipinas, Timor y Sunda se debe a una gran complejidad tectónica en la que participan algunas posibles microplacas.

[FNT 50]

Figura 49.

La trinchera de las Marianas, situada al oeste de las antes mencionadas, es una trinchera que presenta sismos muy profundos y que se une con ellas en la trinchera de Japón. A pesar de ocurrir en ella gran cantidad de sismos, la placa de Filipinas es considerada asísmica por algunos, pues no genera grandes terremotos, probablemente porque esta placa es jalada hacia el oeste (y consumida en las trincheras de Filipinas, Manila y Nansei-Shoto) más o menos a la velocidad con que se aproxima a ella por el este la placa del Pacífico, de manera que no hay compresión entre ambas, según se esquematiza en la figura 50. El lineamiento de sismos profundos de las Marianas parece prolongarse a través de una depresión llena de material volcánico (donde se encuentra, entre otros volcanes, el Fujiyama) a través del la isla de Honshu (la mayor de Japón).

[FNT 51]

Figura 50.

La trinchera de Japón, es distinta a las demás trincheras de arcos de islas porque las islas japonesas son islas del zócalo continental (si bajara el nivel del mar unos 200 m y dejara al descubierto el zócalo continental se vería que éste forma un puente submarino entre continente e isla.). En esta región ocurre la orogenia de tipo del Pacífico, que consiste en la presencia de dos cinturones orogénicos situados a los lados de las islas volcánicas. En el cinturón exterior (Figura 51) hay deformación de subsidencia (típica de arco de islas) y en el cinturón interior, entre el continente y las islas, hay varios tipos de magmatismo y alto flujo de calor. La orogenia indica la presencia de grandes esfuerzos compresivos a los cuales corresponden usualmente grandes terremotos, algunos de los cuales se indican en la figura 9.

[FNT 52]

Figura 51.

La trinchera de Kuriles-Kamchatka es lugar de sismos muy profundos que alcanzan los 700 km de profundidad (Figura 8). La zona de Benioff-Wadati presenta un cambio de echado (inclinación medida hacia abajo a partir de la horizontal) alrededor de los 300 km de profundidad. Los sismos mas grandes de esta región son más bien superficiales, y fue del estudio de esta zona que surgió la idea de los gaps (huecos o extensiones faltantes) sísmicos, de los cuales hablaremos en el capítulo siguiente.

Al oeste de la trinchera de Kuriles-Kamchatka se encuentra la trinchera (o arco) de las Aleutianas, donde los sismos son más bien someros (profundidades focales menores de 299 km), pero donde han ocurrido algunos de los más grandes terremotos de la historia, como el del 18 de marzo de 1964 que tuvo una magnitud Mw = 9.2 (!) (Figura 9). La figura 52 muestra el extremo este de la trinchera de las Aleutianas, lugar de estos grandes sismos y en donde podrían existir otras dos microplacas.

[FNT 53]

Figura 52.

Al sureste de esta trinchera tan sísmica, comunicada con ella por medio de la falla transforme de la Reina Carlota, encontramos una trinchera asísmica donde se consume la placa de Juan de Fuca (Figura 53). En este caso no se conoce la causa de la ausencia de sismos grandes. Una explicación podría ser que ocurra allí un proceso especial de subducción sin fricción intraplaca desconocido (?). Otra explicación podría ser como sigue: nótese que la placa del Pacífico se desplaza hacia el noroeste con relación a la Norteamericana y que, si la placa de Juan de Fuca estuviera fija a la del Pacífico, la forma de la costa causaría la creación de una zona de expansión (véase el apartado V.6); ahora bien, si la expansión que podría producir esta zona es producida por la cordillera de Juan de Fuca y esta placa se desplaza hacia el Sureste, la suma de las velocidades haría que no hubiera (o casi no hubiera) compresión entre las placas Americana y de Juan de Fuca, con la consiguiente ausencia de sismos grandes.

Al sureste de la placa de Juan de Fuca comienza un movimiento transcurrente entre las placas del Pacífico y Norteamericana a lo largo de la zona de fallas de San Andrés. Veremos lo que sucede entre este punto y la parte norte de Sudamérica en el siguiente inciso; ahora saltamos hasta la trinchera de Perú-Chile, donde subduce la placa de Nazca bajo la Sudamericana.

Como puede verse en la figura 9, ocurren grandes terremotos a lo largo de esta trinchera, particularmente en la región sur. Aquí, la causa puede ser la juventud de la placa recién generada en la cordillera de Chile, donde la velocidad de expansión puede llegar a ser de 2 a 3 cm/año desde hace 5 Ma, y fue de 5.6 cm/año los 6 Ma anteriores.

La trinchera de las islas Sandwich del Sur, donde la placa Sudamericana es subducida bajo la de la Antártida, conecta mediante una falla transforme lateral-izquierda con la punta de Sudamérica, pero no se sabe bien qué sucede entre ese punto y el punto triple de esas dos placas con la de Nazca.

[FNT 54]

Figura 53.

Veamos ahora qué sucede con todas las zonas de sutura que se encuentran alrededor y al oriente del Mediterráneo. Partiendo del punto triple de las Azores donde se tocan las placas Norteamericana, Africana y Eurasiática, encontramos una falla transforme (Figura 24) que se bifurca en el camino hacia Gibraltar y (probablemente) se subdivide con ramales hacia el noreste al acercarse a la Península Ibérica. Es a lo largo de este sistema de fallas donde ocurrió el gran sismo de Lisboa de noviembre 1 de 1755, llamado así porque entre los sacudimientos y las grandes olas (tsunami) que produjo arrasó Lisboa, causando más de 60 000 muertes.

Imaginemos que sobre un globo terráqueo mantenemos quieta la placa Eurasiática y rotamos la placa Africana alrededor de la posición del polo de Euler indicado por AFRC/EURA en la figura 47, la manera en que se desplazan los puntos de la frontera entre estas placas nos permite ver cómo cambia el movimiento entre ellas, de transcurrente (al oeste) a compresivo (al este). La zona de transición coincide con la región de Gibraltar y el sur de España, por lo que no debe extrañarnos la complejidad de la tectónica de esa zona Ibero-Mogrebí que discutimos anteriormente.

El proceso de compresión y sutura de dos continentes que chocan, descrito en V.4, es el que ocurre en las zonas sombreadas de la figura 24. El movimiento relativo entre las placas Africana y Eurasiática que continúa produciendo actualmente la orogenia de los Alpes, ha producido dos trincheras en el extremo este del Mediterráneo, la Helénica y la de Chipre. Esta última termina al este en la falla transforme del Mar Muerto, la cual comienza al sur en el Mar Rojo y termina al norte en una zona de compresión llamada de Bitlis.

La figura 54 muestra la distribución de ofiolitas que marcan la zona de sutura de las costas del antiguo mar de Thetys. La zona donde termina la falla del mar Muerto se continúa al Sureste reflejando el movimiento relativo de compresión entre las placas Arábiga y Eurasiática (véase el polo de Euler ARAB/EURA en la figura 47). La zona de ofiolitas se comunica mediante la falla transforme de Zendan con la trinchera de Omán, y ésta termina a su vez en un punto triple sobre la zona de fracturas Owen-Murray que es, en la falla de Chaman hacia el norte, la frontera entre las placas Eurasiática e Indoaustraliana.

También estas placas convergen (polo de Euler INDI/ EURA en la figura 47), y es la compresión de su frontera la que está creando los Himalayas. Se ha propuesto que una zona de sismicidad difusa y somera que existe al sur de India puede ser el sitio donde se va a desarrollar una nueva trinchera que pueda absorber el movimiento convergente de estas placas.

[FNT 55]

Figura 54.

VI.2. LAS PLACAS EN MÉXICO Y SUS ALREDEDORES

Como puede verse en la figura 24, el territorio mexicano abarca partes de cuatro placas litosféricas, y en él encontramos trincheras, centros de expansión y fallas transformes. La mayor parte del territorio continental pertenece a la placa Norteamericana, mientras que, como se muestra en la figura 55 (ésta y varias de las próximas figuras son modificaciones de dos trabajos muy buenos de K. Klitgord y J. Mammerickx de 1982), la península de Baja California pertenece a la placa del Pacífico.

Baja California y el sur de California se están moviendo con respecto a la placa Norteamericana aproximadamente en dirección noroeste a lo largo de una serie de fallas transformes que unen centros de expansión. Esta frontera va desde la boca del Mar de Cortés (o Golfo de Baja California) hasta la laguna de Salton, en California, y de allí continua a lo largo del sistema de fallas de San Andrés hasta terminar en la placa de Juan de Fuca. A continuación recorreremos esta frontera notando algunos puntos de interés.

[FNT 56]

Figura 55.

Los lineamientos magnéticos del fondo oceánico en la boca del Mar de Cortés (Figura 55) muestran cómo aumenta, a razón de unos 6 cm/año, la separación entre la placa del Pacífico y una pequeña placa, llamada de Rivera que se encuentra entre las zonas de fractura de Rivera, al sur, y de Tamayo, al norte (Figura 56). Como ilustración del proceso de generación de nueva corteza que está dando lugar a la creación del Mar de Cortés, la figura 57 muestra un perfil batimétrico, entre los puntos A y A' de la figura 56, en el cual se pueden apreciar el extremo norte de la Trinchera Mesoamericana y la cordillera del Pacífico Oriental.

[FNT 57]

Figura 56.

Dentro del Mar de Cortés, encontramos centros de expansión escalonados, unidos por fallas transformes, cada vez más cubiertos de sedimentos conforme nos alejamos de la boca del golfo y nos acercamos al delta del Río Colorado que se encuentra en su otro extremo. La sedimentación en las regiones centro y Noroeste del golfo es tan grande que cubre la nueva corteza conforme se va generando, de manera que los centros de expansión se localizan bajo cuencas sedimentarias.

En la figura 57 se muestran perfiles para las líneas BB' y CC' de la figura 56; la primera atraviesa la cuenca de Farallón, cercana a la boca del golfo, mientras que la segunda atraviesa la cuenca de Guaymas, situada en frente de ese puerto aproximadamente a la mitad del golfo. La figura 57 muestra también un plano batimétrico donde se pueden apreciar esta cuenca y las fallas transformes de sus extremos.

[FNT 58]

Figura 57.

La figura 58 presenta el extremo norte del Mar de Cortés y las últimas cuencas submarinas (posiblemente existan allí cuencas menores no identificadas a causa de la gran cantidad de sedimentos producidos por las tierras cercanas y, sobre todo, arrastrados por el Río Colorado). La frontera entre las placas continúa en la falla de Cerro Prieto que une la zona geotérmica del mismo nombre, ubicada en el valle de Mexicali, con la cuenca de Wagner.

[FNT 59]

Figura 58.

El valle de Mexicali y el de Imperial, que es su continuación en California (EUA), tienen zonas geotérmicas que son centros de expansión, localizados en grabens cubiertos por sedimentos y conectados por las fallas de Imperial y Brawley. A partir de la zona de expansión localizada junto a la laguna ("Mar") de Salton, comienza la rama principal de la zona de fallas de San Andrés. Hasta aquí los desplazamientos de la frontera habían sido hacia el este, causando la formación de centros de expansión; ahora comienzan a existir desplazamientos hacia el oeste (Figura 59), ocasionados por la antigua frontera del continente, que producen enormes esfuerzos de compresión que atoran la falla transforme (véase el apartado V.6).

Así, el doblez hacia el oeste da lugar a dos fenómenos principales: uno es la acumulación de esfuerzos que producen terremotos grandes pero infrecuentes; otro es que al impedir el movimiento a lo largo de la falla propicia el movimiento a lo largo de otras fallas (Figura 59).

[FNT 60]

Figura 59.

Finalmente, la rama principal que es propiamente la falla de San Andrés cruza la Bahía de San Francisco, donde ocurrió en abril 18 de 1906 uno de los terremotos más famosos (¿un conflicto San Andrés vs. San Francisco?), y finalmente abandona el continente cerca de los 40° de latitud norte cerca del punto triple donde comienza la placa de Juan de Fuca.

Volviendo a la figura 58, podemos ver varias fallas que atraviesan Baja California. Parte del desplazamiento entre las placas ocurre a lo largo de estas fallas, por lo que la expansión en el golfo es más lenta para los centros que se encuentran más al norte. La falla más prominente del norte de Baja California es la de Agua Blanca, pero aparentemente ha dejado de ser activa y ahora el desplazamiento ocurre principalmente a lo largo del sistema de fallas de San Miguel. Parte del desplazamiento es tomado también por fallas submarinas más o menos paralelas a la costa del Pacífico.

Regresando al sur, justo a la boca del Mar de Cortés encontramos la microplaca de Rivera, cuyo papel en la sismicidad continental no se conoce aún. En la región costera de Jalisco han ocurrido en tiempos históricos grandes terremotos, pero no es posible saber si fueron producidos por el movimiento de esta placa o por el de la placa de Cocos.

La placa de Cocos es generada en la cordillera del Pacífico Oriental, abarca desde la zona de fracturas de Rivera hasta el sistema de cordilleras de Galápagos y es consumida en la Trinchera Mesoamericana que se extiende desde Nayarit hasta la frontera sur de Costa Rica (Figuras 55 y 56). Los rasgos característicos de la placa de Cocos son las zonas de fracturas de Orozco, de O'Gorman, de Tehuantepec, de Galápagos y de Grijalba.

La zona de fracturas de Tehuantepec es muy ancha y separa corteza de edades muy distintas, con la más antigua al sur. En la orilla norte de esta zona se encuentra la Dorsal de Tehuantepec, la cual está formada por lavas de origen oceánico y se extiende desde la trinchera hasta una antigua zona extinta de expansión (indicada por puntos en la figura 55). Han pasado por lo menos 88 años sin la ocurrencia de un gran (Ms ³ 7.5) terremoto en la región donde la dorsal de Tehuantepec es subducida y, como el tiempo promedio de recurrencia (repetición) de los grandes sismos en la trinchera Mesoamericana es de 35 a 50 años, sería de esperarse allí la próxima ocurrencia de un gran terremoto [Ms ~ 8.4(!)]. Sin embargo, como se discutió en V.3, esta dorsal (o meseta) oceánica, influye en el proceso de subducción de manera que es posible que esta región esté subduciendo asísmicamente y no constituya un verdadero gap sísmico (concepto que se explicará en el apartado VII.3).

Aparentemente, los sismos someros destructivos que ocurren en México al noroeste de la Dorsal de Tehuantepec son generados en una banda de unos 45 km de ancho a lo largo de la trinchera, donde los sismos son de mecanismo primordialmente reverso. De nuevo la subducción de la dorsal de Tehuantepec parece modificar este proceso, aumentando el ancho de la banda sismogénica en las regiones cercanas a ella.

Al sureste de la Dorsal de Tehuantepec se encuentra un punto triple donde el sistema de fallas de Polochic-Motagua separa la placa de Norteamerica de la del Caribe y donde la placa de Cocos comienza a ser subducida bajo ésta (Figura 55). El proceso de subducción se complica de nuevo a la altura de la frontera entre Costa Rica y Panamá, pues allí se encuentran la dorsal de Cocos y el punto triple donde la zona de fractura de Panamá separa las placas de Cocos y de Nazca.

La zona de fractura de Panamá continúa al sur en las crestas conocidas como rupturas de Costa Rica, de Ecuador y de Galápagos (Figura 60), que forman la parte oriental de la Cordillera de Cocos-Nazca, la cual se extiende hacia el oeste hasta la Cordillera del Pacífico oriental (Figura 55). Al este de la zona de fractura de Panamá, entre ésta y la trinchera de Colombia-Ecuador, se encuentran las mesetas oceánicas Coyba, Malpelo y Carnegie; al sur de esta última, a la altura de la frontera entre Perú y Chile comienza la trinchera de Perú-Chile de la cual se habló en el inciso pasado.

[FNT 61]

Figura 60.

La placa del Caribe consume corteza oceánica por sus dos extremos (Figura 60), al oeste la del Pacífico en la trinchera Mesoamericana a lo largo de Centroamérica, y al este el suelo del Atlántico en la trinchera de Puerto Rico que bordea el arco de islas de las Antillas Menores (que incluye, entre otras, las islas Vírgenes, Antigua, Guadalupe, Dominica, Martinica, Santa Lucía, San Vicente, Barbados, Granada y Trinidad y Tobago).

Como se indica en la figura 60, la frontera sur de la placa del Caribe, y el punto triple Caribe-Nazca-Sudamérica, no están bien definidos. El extremo sur de la trinchera de Puerto Rico se comunica al oeste a través de un complejo sistema de fallas en el norte de Venezuela (de las cuales las más importantes son El Pilar, Casanay, Río Grande y Bocono) y el noreste de Colombia (Santa Marta-Bucaramanga y Romeral). Éstas últimas parecen tener desplazamientos con componentes transcurrentes que pueden indicar movimiento independiente del bloque Andino. Las componentes normal y reversa del fallamiento se indican por pequeñas líneas que apuntan al bloque más bajo de la falla. Por otro lado, se han observado fracturamientos y mecanismos sísmicos complejos en todo Panamá; la definición de la tectónica de esta región requiere aún de mucho estudio.

El borde norte de la Placa del Caribe está constituido por una falla transforme que parte del extremo norte de la trinchera de Puerto Rico, pasa al norte de la isla del mismo nombre, atraviesa la República Dominicana y Haití, pasa al norte de Jamaica, a lo largo de la depresión de Caimán en donde tiene un centro de expansión llamado centro de extensión de Caimán medio (Figuras 55 y 60), continúa hasta el Golfo de Honduras y atraviesa Guatemala y el extremo austral de México como el sistema de fallas Polochic-Motagua (Figura 60).

Con esto terminamos la descripción del panorama actual de las placas tectónicas; a continuación veremos qué nos puede decir la teoría acerca del pasado de estas placas.

VI.3. EL PASADO. ¿UN SUPERCONTINENTE ORIGINAL?

Podemos reconstruir el pasado de las placas recorriendo "en reversa" el camino indicado por las huellas presentes en el fondo oceánico, moviendo los continentes hacia los centros de expansión en las direcciones indicadas por las zonas de fractura, de manera que cada vez que se encuentren los continentes debe haber concordancia entre las formaciones geológicas y formas de vida localizadas en los puntos que quedan en contacto. Pero, como el fondo oceánico es sistemáticamente consumido en las trincheras, de los 3 800 a 4 000 Ma que han pasado desde que se solidificó la corteza terrestre, sólo quedan huellas en el fondo oceánico de los 125 Ma más recientes.

Para reconstruir el pasado anterior a este tiempo es necesario interpretar las huellas dejadas por episodios antiguos en los continentes, como son montañas, orientaciones paleomagnéticas, actividad volcánica, paleofallas, etc. Naturalmente, nuevos episodios pueden modificar o borrar las huellas dejadas por episodios previos, por lo que la historia se vuelve más difícil de interpretar conforme más nos remontamos al pasado, hasta llegar al nivel de mera especulación o "adivinanza educada" para el pasado más remoto.

Comenzando por éste, podemos preguntarnos cómo fueron creados los continentes primordiales. Algunas teorías de la creación de la Tierra mantienen que ésta se formó a partir de nubes de gases ardientes que poco a poco se fueron condensando y enfriando; otras teorías dicen que se formó a partir de la acreción de partículas frías que al condensarse, como contenían gran cantidad de elementos radiactivos, produjeron calor suficiente para fundir el planeta entero. De cualquier manera, el que el planeta se haya encontrado en estado de fusión permitió (según H. Hess) que ocurriera una "gran catástrofe" consistente en una vuelta convectiva (véase convección en el apartado VIII.4) en que todo el planeta actuó como una sola celda, durante la cual los materiales con alta temperatura de fusión, como hierro y níquel, se sumergieron para formar el núcleo y los silicatos subieron a la superficie para formar un continente original (posiblemente en varios pedazos), que podemos llamar Pangea O.

La presencia de la corriente caliente residual de la vuelta convectiva bajo el continente primordial pudo haber causado la ruptura de éste y la separación de sus partes, comenzando así el proceso de deriva.

Algunos otros autores sostienen que el o los continentes primordiales se formaron gradualmente, por diferenciación de los magmas, durante un periodo particular cuando las condiciones de temperatura en la superficie de la Tierra y flujo de calor eran apropiadas. En este caso, si se formaron varios continentes primordiales deben haberse unido para formar Pangea O.

Con base en las huellas de las grandes revoluciones orogénicas (véase el cuadro de tiempos geológicos) y de otros datos biológicos, geológicos y geofísicos, se ha formado el siguiente panorama de lo acontecido desde la solidificación de la corteza terrestre hace unos 4 000 Ma, y que se muestra esquemáticamente en la figura 61.

[FNT 62]

Figura 61.

Las formaciones asociadas con los episodios orogénicos más antiguos, el Kenoriano [2 400-2 900 Ma antes del presente (Ma A.P.)], el Hudsoniano (1 660-1 900 Ma A.P.), el Elsoniano (1 200-1 500 Ma A.P.) y el Grenville (hace 1 000-1 200 Ma A.P.), se encuentran distribuidas sobre casi todos los continentes y modificadas por episodios más recientes.

En el Precámbrico tardío, hace unos 700 Ma dos grandes paleocontinentes, Panáfrica y Baikalia, se unen para formar (paleo) Pangea. Este continente se divide, alrededor de 600 Ma A.P. durante el Cámbrico y el Ordovícico temprano, en (paleo Norteamérica, (paleo) Europa, (paleo) Asia y (Paleo) Gondwana, el cual incluía los actuales Sudamérica, África, Australia, Antártida e India.

Hace unos 500 Ma, el Paleoatlántico, océano situado entre Europa y Norteamérica, comienza a cerrarse, y unos 60 Ma más tarde durante el principio del Silúrico, estos continentes se aproximan y comienza la revolución Tacónica, la cual produjo durante unos 90 Ma montañas que van desde Canadá nororiental hasta el Estado de Connecticutt, EUA. Finalizada la revolución Tacónica, a mediados del Carbonífero (unos 330 Ma A.P.), la revolución Caledónica produce orogenia en Siberia boreal, en Noruega y en Escocia (de allí el nombre de esta revolución) e Irlanda.

El siguiente episodio del cierre del paleoatlántico, conocido como Acadiano, produce montañas en la parte Noreste de Norteamérica (Baffin y Labrador) durante aproximadamente 320 a 250 Ma A.P. Durante el Carbonífero y el Pérmico, por 280 Ma A.P., Gondwana se une a Norteamérica y Europa (Figura 62a). Por esta época ocurre la orogenia Variscana en el sur de Irlanda, Inglaterra y Alemania y el norte de Francia, y comienza la fase orogénica conocida como Apalachiana en el oeste de Norteamérica y el noroeste de Europa y África.

[FNT 63]

Figura 62.

Alrededor de 230 Ma A.P., Asia se une con Europa, formándose los Urales e integrando el continente único que Wegener llamó Pangea (Figura 2), termina la revolución Apalachiana. La figura 63, que es modificación de la reconstrucción que hicieron en 1970 R. Dietz y J. Holden de las configuraciones antiguas de los continentes, muestra en a) Pangea a principios del Triásico hace unos 225 Ma.

Como muestran las figuras 61 y 63b, entre 190 y 180 Ma A.P. se separan Laurasia (formada por Norteamérica, Europa y Asia) y Gondwana (el resto de los continentes).

Durante el Jurásico, alrededor de 140 Ma A.P., Antártida y Australia (juntas) e India se separan de Gondwana, África rota con respecto a Europa. Un poco más tarde, Sudamérica se separa de África (Figura 63c). A fines del Cretácico, Norteamérica se separa de Laurasia y Australia de la Antártida, India avanza hacia Asia (Figura 63d).

[FNT 64]

Figura 63.

Alrededor de 40 Ma A.P., India (unida ya con Australia) incide contra Asia, creando la cordillera del Himalaya. Unos 10 Ma después, África empuja el bloque adriático contra Europa, formando los Alpes (véase el apartado VII.1), y entretanto el estrecho de Gibraltar se cierra repetidamente ocasionando la desecación del Mediterráneo y el consecuente depósito en su cuenca de grandes capas de rocas sedimentarias llamadas evaporitas.

Hace 2 Ma se establece la conexión mesoamericana separando los océanos Atlántico y Pacífico; a juzgar por su juventud y por los procesos tectónicos actuales que ocurren a su alrededor, el Istmo de Panamá es una estructura fugaz (geológicamente hablando).

VI.4. PASADO RECIENTE DE LAS PLACAS DE MÉXICO

La historia de la evolución de las placas litosféricas del noroeste de Norteamérica, desde el Eoceno hasta el presente, ha sido reconstruida por T. Atwater (1970) y J. Mammerickx y K. Klitgord (1982); es una historia llena de peripecias, pero a grandes rasgos es la siguiente.

Hace unos 60 Ma existía, entre la placa del Pacífico y la de Norteamérica, una placa llamada Farallón (Figura 64a) que era consumida por una trinchera que existía a todo lo largo de la costa de Norteamérica. Alrededor de 40 Ma A.P. (Figura 64b) la cordillera donde se producía la placa de Farallón entró en contacto con la trinchera, aproximadamente a la altura de Guaymas [en la figura se indica la posición de referencia de Mazatlán (MZ), Guaymas (GS), Los Ángeles (LA), San Francisco (SF) y Seattle (S)]. La velocidad relativa de la placa del Pacífico con respecto a la de Norteamérica (tal vez tras un pequeño reajuste), resultó como la indicada por la flecha horizontal grande en la figura, de manera que, como vimos en el ejemplo de la sección sobre puntos triples (V.7), surgió una falla transforme entre dos puntos triples.

En 20 Ma A.P., la falla transforme se extendía del sur de Guaymas a Los Ángeles, mientras el resto de la placa de Farallón, denominada por algunos de Juan de Fuca (al noroeste) y de Guadalupe (al sureste) continuaba siendo consumida (Figura 64e). Hace unos 10 Ma (Figura 64f) la cordillera alcanzaba la trinchera al noroeste y el punto triple del sureste alcanzaba su posición mas austral. Entre 4 y 5 Ma A.P. el extremo norte de la cordillera del Pacífico Oriental brinca al lugar donde ahora se encuentra la boca del Mar de Cortés y el golfo comienza a abrirse (Figura 64g). La figura 64h muestra la posición actual de los puntos triples.

[FNT 65]

Figura 64.

Las huellas magnéticas y batimétricas del fondo del mar mostradas en la figura 55 permiten visualizar la manera en que la interacción entre las placas de Norteamérica (PNA) y del Pacífico (PP) influyó en el proceso de expansión entre Pacífico y Guadalupe (PG), generalmente en forma episódica. La figura 65 muestra en a cómo los centros de expansión se reorientaron en 25 Ma A.P. para quedar como en b.

En la figura 65c y d se ilustra cómo, entre 12.5 y 11 Ma A.P., los centros de expansión alrededor de la zona de fracturas de Molokai (llamada Shirley entre la cordillera y la costa) fueron "abandonados", es decir, dejaron de generar nueva corteza, y los centros de expansión desde el norte de la zona de fracturas de Clarión hasta la de Clipperton-Tehuantepec se reorientaron, dando lugar a las placas de Rivera (PR) y de Cocos (PC). El tramo norte del nuevo centro de expansión es parte de la actual cordillera del Pacífico Oriental (CPO).

Antes de los 6.5 Ma A.P. surge, al sur de la zona de fracturas de Orozco y al este de los centros producto de la reorientación, una nueva cordillera, también parte de la actual CPO, con una micioplaca (sombreada en la figura 65e) entre ellos. Alrededor de 6.5 Ma A.P., los centros de expansión al sur de la zona de fallas de Orozco son abandonados (su "cadáver" se conoce como Dorsal del Matemático) y la microplaca pasa a formar parte de la Placa del Pacífico. Los centros de expansión de la CPO del sur cambian su orientación (Figura 65f).

Al tiempo del cambio de la parte norte de la CPO a la boca del Mar de Cortés, la parte sur de la CPO se extiende hacia el norte hasta la zona de fracturas de Rivera, creando otra microplaca (sombreada en la figura 65g). Después de 3.5 Ma A.P. el antiguo centro de expansión al sur de esta zona de fracturas fenece también (parte norte de la dorsal del Matemático), la microplaca es añadida a la Placa del Pacífico y la Placa de Rivera toma su tamaño actual (Figura 65h).

[FNT 66]

Figura 65.

Nótese que el Mar de Cortés es una estructura muy reciente y que, durante unos 26 Ma, el movimiento transcurrente entre las placas del Pacífico y de Norteamérica fue a lo largo de fallas en la orilla del Pacífico, varias de las cuales son aún hoy aparentemente activas. ¿Por qué brincó entonces la frontera tierra adentro, teniendo un sistema de fallas ya funcionando?

La respuesta está posiblemente en la forma convexa de la orilla continental. Al entrar en contacto con ella la Placa del Pacífico, la fricción entre ambas debe haber sido pequeña debido al calor aún presente del extinto centro de expansión y a la pequeña expansión de la falla transforme resultante. Conforme aumentaba la expansión de la zona de contacto y se enfriaba ésta, la mayor resistencia al movimiento originó, como hemos visto, cambios en la dirección de expansión; mientras tanto, la deformación de la orilla continental pudo producir tierra adentro adelgazamiento, ascenso de isotermas y, consecuentemente, debilidad de la misma.

Al alcanzar Cabo Corrientes, donde el continente se curva en forma abrupta y conforme aumentaba más la resistencia a lo largo de las fallas oceánicas, como los centros de expansión habían adquirido una orientación apropiada, resultó más eficiente cambiar la frontera a la zona de debilidad tierra adentro, y la península de Baja California quedó (más o menos) fija a la Placa del Pacífico. Probablemente, según sugieren fallas no bien documentadas que atraviesan la península de Baja California, la integración de ésta a la Placa del Pacífico pudo llevarse a cabo de manera episódica.