VIII. LAS GRANDES INCÓGNITAS

EN CAPÍTULOS anteriores se mencionaron ya algunas de las múltiples lagunas que hay actualmente en la descripción del modelo; varias de las referentes al estado actual y al pasado reciente de las placas terrestres seguramente podrán ser resueltas al contar con más y mejores datos, pero las referentes al pasado antiguo requerirían para su solución del conocimiento exacto del mecanismo que mueve las placas.

Sabemos que dicho mecanismo involucra procesos que ocurren a grandes profundidades en el interior de la Tierra que no podemos observar de manera directa. Naturalmente, se han elaborado muchos modelos del interior del planeta (casi tantos como científicos se han dedicado a la materia) que satisfacen igualmente bien las pocas observaciones indirectas con que contamos, lo cual significa que en realidad no se sabe bien qué ocurre allí.

En este capítulo recapitularemos algunas de las actuales incógnitas y veremos algunos de los posibles modelos que se han propuesto para explicarlas.

VIII.1. LAS FRONTERAS ENTRE LAS PLACAS. EL PAPEL DE LAS MICROPLACAS

Existen (como se puede entrever en el capítulo VI) incógnitas respecto a algunas de las fronteras entre las placas y los procesos que ocurren en ellas. Como ejemplos podemos mencionar las fronteras entre Norteamérica y Sudamérica, entre Norteamérica y Eurasia, entre Europa occidental y África, y entre el Caribe y Cocos. El sencillo cuadro inicial que explica a grandes rasgos los procesos entre las principales placas (definidas mas o menos intuitivamente) ha adquirido, gracias a la cantidad de nuevas observaciones, gran nitidez general, pero se ha vuelto confuso en donde los datos no son aun suficientes.

Para la definición de las fronteras entre placas es particularmente importante el papel que pueden desempeñar las microplacas en lugares donde ocurre fuerte deformación, a menudo en los entornos de los puntos triples. Estos lugares, donde las fronteras entre placas, consideradas lineales por el modelo, se transforman en deformaciones y rupturas que abarcan un área entera, posiblemente puedan reducirse a interaciones entre microplacas que integren el área, pero hacerlo requerirá sin duda cantidad de estudios previos.

VIII.2. EL EJE NEOVOLCÁNICO MEXICANO

En los arcos de islas o de montañas asociados con las zonas de subducción, se encuentra casi siempre que los volcanes (si los hay) se hallan bonitamente alineados paralelamente a la trinchera. El casi de la frase anterior significa México, donde existe un eje (también llamado cinturón, banda o zona) que cruza el continente, aproximadamente en dirección este-oeste, donde los volcanes están alineados, pero no a lo largo de la trinchera.

La figura 70 muestra los volcanes del Eje Neovolcánico Mexicano (ENM), que podría considerarse comunicado, por medio de los volcanes Chichón y Tacaná, con la línea de los volcanes centroamericanos que son paralelos a la trinchera. El eje se llama neovolcánico porque los volcanes que lo componen surgieron entre el Oligoceno (época en que entraron en contacto la placa del Pacífico y la Norteamericana) y el Cuaternario. Extrañamente, sus lavas son calcoalcalinas (< 53% de sílice), y no andesíticas (53-6O% de sílice) que son las típicas del vulcanismo continental cercano a la trinchera.

¿Por qué ocurre esto? No se sabe. Algunos investigadores han propuesto que se debe a la subducción de la dorsal de Tehuantepec (indicada en la figura). Pero, aunque es muy probable que este proceso influya grandemente en la sismicidad, su influencia en el vulcanismo es más que dudosa, ya que éste parece reacercarse a la trinchera justo donde se encuentra la dorsal, y el vulcanismo al sureste de ésta no aparece desalineado.

[FNT 71]

Figura 70.

La solución es probablemente mucho más compleja; nótese que en la mayor parte de las reconstrucciones de paleocontinentes aparece sólo la parte norte de México. Algunos investigadores han propuesto que la parte sur de México está constituida de uno o más terrenos alóctonos (es decir, originados en otro lado) que se han integrado a la placa Norteamericana posiblemente durante el Jurásico. Otros han encontrado evidencias de fuertes movimientos transcurrentes a lo largo del ENM, lo que ha llevado a proponer zonas de debilidad por donde asciende el magma. Se han propuesto rotaciones del continente, paleotrincheras alineadas con el ENM, deformación de la placa subducida, deformación de las isotermas bajó la placa, etcétera.

En resumen, el ENM es una gran incógnita de la tectónica de placas.

VIII.3. PUNTOS CALIENTES Y PLUMAS

Existen cadenas de islas volcánicas y de montes submarinos (MS) que no están asociadas a alguna zona de subducción, y algunas de ellas se encuentran, como la cadena de Hawai-Emperador (Figura 71) en el centro de una placa. Además, si se estudia la edad de las componentes de la cadena, se encuentra que la edad aumenta conforme uno se aleja de uno de los extremos y que la actividad volcánica disminuye con la edad.

[FNT 72]

Figura 71.

Parece como si se tratara de una fuente de lava, fija en un punto, por encima de la cual pasara la placa litosférica; no se explica cómo una fuente que viaja por debajo de la placa, debido a que a veces puede haber varias cadenas en una placa y todas se comportan de la misma manera. Es una fuente enorme de energía, por ejemplo la cadena de Hawai-Emperador incluye volcanes que tienen, medida desde el fondo oceánico, una altura comparable a la del Everest, y los ha estado produciendo, usualmente varios a la vez, desde hace 70 millones de años.

Estas fuentes de lava son llamadas puntos calientes, y se supone (aunque hay quienes se oponen a este modelo) que son producidos por plumas, esto es, corrientes angostas (unos 150 km de diámetro) de material caliente que ascienden rápidamente (1-2 m/año) desde las profundidades del manto, y deben provenir de grandes profundidades, probablemente del manto inferior, para no ser arrastradas por el movimiento de la litósfera.

Existen más de 120 puntos calientes que han estado activos en los últimos 10 Ma, distribuidos sobre océanos y continentes como se muestra en la figura 72, donde los más activos (como Hawai, Azores, Canarias, Santa Helena, etc.) están indicados con un doble círculo. Ya que varios de ellos se encuentran cercanos a cordilleras mesooceánicas se ha propuesto que uno o varios puntos calientes pueden originar una ruptura y un centro de expansión; también se ha dicho que es el material ascendente de estos centros el que favorece la ascensión de una pluma; el hecho es que hoy día aún no se sabe qué determina su posición.

Además de por su papel en la creación de zonas de actividad geotérmica y posibles centros de expansión, los puntos calientes son de interés para los geofísicos porque, si no se mueven de su posición pueden servir de marco de referencia para conocer los verdaderos movimientos de las placas (generalmente, lo que se conoce son los movimientos relativos de unas placas con respecto a otras). Pero, ¿se mueven o no? Esto en la actualidad es motivo de animadas discusiones en las que unos afirman que se mueven con velocidades (nada despreciables) del orden de 0.8 a 2 cm/año, y los que afirman que están quietos. Algunos otros afirman que la pluma no se mueve, pero si pasa encima de ella una zona de fracturas u otra estructura que le proporcione una vía fácil para subir, el magma puede seguir ese camino y aparecer en la superficie desviado de su lugar original, lo que puede hacer parecer que sí se mueven.

[FNT 73]

Figura 72.

De cualquier forma, los puntos calientes han sido usados como marco de referencia en varios estudios, con resultados aceptables dentro del error experimental. La figura 40 que muestra las velocidades de las placas principales es un ejemplo de determinaciones referidas a este marco. Las determinaciones de edad en los volcanes de las cadenas producidas por puntos calientes han aportado datos muy valiosos acerca de la velocidad y dirección del movimiento de varias placas.

Qué son los puntos calientes, qué los produce, qué determina su posición, cuál es su papel (si es que tienen alguno) en el proceso de tectónica de placas, son actualmente importantes incógnitas.

VIII.4. EL MOTOR QUE MUEVE LAS PLACAS

Ésta es la gran incógnita. El que las placas se mueven es ya generalmente aceptado, así como sus implicaciones tectónicas, pero todavía no hay un modelo universalmente aceptado del proceso que las mueve.

Entre los modelos menos aceptados podemos mencionar el de deriva al Oeste, que propone que, debido a que están desacopladas del resto del planeta por la astenósfera, al girar éste las placas por inercia derivan hacia el oeste. Como unas son más grandes que otras y algunas tienen mayores montañas y raíces, la inercia y el grado de desacoplamiento no es igual para todas, por lo que existe movimiento relativo entre ellas. Sin comentarios.

Casi todos los demás modelos proponen al calor interno de la Tierra, producido o mantenido por radiactividad natural, como fuerza motriz que produce corrientes de convección. Las corrientes de convección son las que se producen en un líquido cuando se calienta rápidamente por su parte inferior, como se muestra en la figura 73a, el material caliente asciende y se enfría arriba, mientras que el material frío desciende y se calienta abajo, formando una celda (célula) de convección. Convección es el proceso de transferencia de calor mediante movimiento del medio (a diferencia de los otros métodos de transferencia del calor que son conducción y radiación).

Si la fuente de calor se reparte en la parte inferior se pueden formar varias celdas de convección (Figura 73b); y si en vez de una capa plana de líquido tenemos una esférica, la convección en el manto podría verse como la figura 73c si involucrara al manto superior solamente, o como la 73d, si involucrara al manto completo. Este último proceso haría imposible la diferenciación de los mantos, pues mezclaría sus materiales, por lo que la convección del manto entero debe consistir de dos o más capas de celdas, como la mostrada en la figura 73e. Hasta la fecha existe la disputa entre los "todomantistas", que opinan que convecciona el manto entero, y los "mantosuperioristas", que dicen que convecciona sólo el manto superior. Un modelo de convección tridimensional que produjera una corriente ascendente bajo una cordillera oceánica se muestra en la figura 73f.

[FNT 74]

Figura 73.

Los primeros modelos motores propusieron la existencia de corrientes de convección que acarreaban a las placas arrastrándolas por la parte inferior. Este modelo decía que los centros de expansión correspondían a los sitios donde se encuentra la corriente ascendente de las celdas, mientras que las zonas de subducción correspondían con las corrientes descendentes.

Tres grandes problemas (y varios pequeños) no pudieron ser explicados por este modelo: i) no se pudo hallar la menor señal de la regularidad geométrica que siempre presentan las celdas de convección; ii) no explicaba como podían las corrientes arrastrar a la litósfera si ésta se encuentra desacoplada por la astenósfera; iii) las zonas de Wadati-Benioff indican que la corteza desciende en una dirección inclinada y no verticalmente como requerirían las corrientes de convección.

Entonces se pensó en ampliar el concepto de convección de modo que incluyera el acarreo de calor por movimientos del medio, pero no en forma de celdas regulares; el material caliente asciende hasta alcanzar los centros de dispersión, el material frío (las placas) desciende siguiendo una dirección cualquiera y el material del manto se reacomoda según sea necesario. Primero se planteó que las placas podrían ser empujadas por el nuevo material creado en los centros de expansión, pero no se explicaba (entre otras cosas) cómo la placa, siendo delgada y estando caliente cerca de éstos, podía transmitir la fuerza en vez de deformarse.

Después se propuso que fuera la placa antigua subducida la que jalara al resto de la placa. Algunos de los problemas que no podía explicar eran: cómo podía jalar desde un extremo al resto de la placa con fuerza suficiente sin que ésta se rompiera, y por qué las placas con trincheras muy extensas no subducen más rápidamente que las otras.

El proponer que ambos efectos, empuje y jalón, actuaran a la vez tampoco pudo resolver los problemas. Sin embargo, ya se había dado un paso muy importante que fue considerar que las placas no sólo son arrastradas sino que forman parte integral del proceso de convección.

Al estudiar que la profundidad del fondo oceánico aumenta con la edad del mismo, surgió la idea (ya presentada en el apartado V.2) de que el material caliente cercano al centro de expansión levanta la corteza y ésta es impulsada por su propio peso de la misma forma que una persona es impulsada por su peso al resbalar por un tobogán (véase la figura 24). Al fin del "tobogán", la parte subducida de la placa puede jalar al resto (véase el apartado V.3), pero es un efecto más bien complementario.

Éste es el tipo de motor más aceptado en la actualidad (aunque no es el único); en cuanto a las características del mismo, podemos mencionar que los centros de dispersión son estructuras pasivas, es decir, se crea nueva corteza porque las placas se alejan entre sí, el material del manto asciende al existir el hueco, pero no lo crea. Esto está indicado por la creación esencialmente simétrica de corteza. Las fronteras de las placas están grandemente determinadas por la forma de los continentes y por la historia del sistema.

Así, aunque la fuente de poder que mueve las placas es el calor del interior de la Tierra, el mecanismo que gobierna la tectónica es su corteza. El estado de las placas hace que el movimiento se lleve a cabo de determinada manera, ese movimiento cambia las relaciones entre las placas y las nuevas relaciones modifican el movimiento, etc.; estamos ante un sistema retroalimentado, ejemplo de lo cual es la serie de reorientaciones de los centros de dispersión mencionados en el apartado V.8.

Cuál y cómo es el motor para el movimiento de las placas litosféricas es otra de las grandes incógnitas de la tectónica de placas.

Para terminar, repetiremos que existen bastantes incógnitas que debemos conocer antes de considerar completa la teoría de la tectónica de placas. Además, siempre existe la posibilidad de que mayores conocimientos sugieran otra teoría que explique igualmente bien (o, tal vez, mejor aún) las observaciones.