XX. MODELOS TEÓRICOS DEL NÚCLEO

COMO ya dijimos, el objetivo de la física nuclear es entender un complejo sistema de protones y neutrones que sienten la fuerza nuclear. Veamos un poco cuáles son las características de esta fuerza. Primero, es muy intensa, mucho más que la fuerza eléctrica de Coulomb. Por lo tanto, la energía que se debe comunicar a un nucleón para expulsarlo del núcleo es grande. Y si logramos romper al núcleo en muchos pedazos, la energía liberada puede ser enorme, como en la fisión nuclear que mantiene operando un reactor nuclear. Si esta liberación de energía se desboca, tendremos una bomba, la mal llamada bomba atómica, en realidad bomba nuclear. En segundo lugar, la fuerza entre nucleones es muy compleja, a diferencia de la eléctrica, que se expresa simplemente así: dos cargas se atraen o repelen con una fuerza proporcional a sus cargas e inversamente proporcional al cuadrado de la distancia que las separa. ¡Ojalá tuviéramos una expresión tan simple para la fuerza nuclear! Esta última es repulsiva cuando los nucleones se acercan mucho y casi se tocan, se vuelve después atractiva a distancias un poco mayores y, finalmente, desaparece cuando la separación entre los nucleones apenas es igual a 4 o 5 veces el radio del protón, que es menor de l0-13cm. Por ello se dice que la fuerza nuclear es de muy corto alcance. Además, los protones y neutrones poseen, al igual que el electrón, un espín y la fuerza nuclear depende de este estado de rotación intrínseca de los nucleones.

Bástenos con lo anterior para darnos cuenta de que la fuerza nuclear es complicadísima. ¡Qué dificultades no habrá entonces para calcular las propiedades del sistema de nucleones! Sin embargo, los físicos son tercos y no se arredran fácilmente. Ya que el problema nuclear plantea dificultades matemáticas insuperables, se inventaron caricaturas de la realidad, modelos matemáticos simplificados, con los cuales es posible predecir en forma aproximada las propiedades del núcleo.

La teoría nuclear tomó dos rutas que hasta mediados de los sesentas aparentaban ser divergentes. Por un lado, se desarrolló un modelo de partículas independientes, semejante al modelo de capas atómico, y por ello llamado el modelo de capas nuclear. Por el otro lado, se buscaron imágenes del núcleo a semejanza de objetos macroscópicos, como una piedra que gira o una gota de líquido que vibra. Estos últimos modelos, llamados colectivos porque el movimiento de un nucleón está muy condicionado por el movimiento de todos los otros nucleones, toman como hipótesis una interacción muy grande entre los componentes nucleares. El primer modelo, como lo indica su nombre, supone que la interacción entre los nucleones casi se agota al generar una fuerza promedio que actúa sobre todos los nucleones por igual; lo que resta de la interacción nucleón-nucleón, tan intensa, apenas perturba el movimiento de cada nucleón en ese campo de fuerzas promedio.

A mediados de los anos sesenta, se dan los primeros pasos para hacer los modelos colectivos compatibles con el modelo de capas nuclear. Ello fue en buena medida posible gracias al método de paréntesis de transformación desarrollado en 1960 por Marcos Moshinsky en el Instituto de Física de la UNAM, que permitió por primera vez realizar de manera sistemática cálculos con fuerzas nucleares complicadas dentro del modelo de capa nuclear. Estos paréntesis fueron tabulados usando la primitiva computadora IBM 650 que entonces tenía la Universidad, y pronto fueron usados en todo el mundo. De hecho, el primer cálculo que se hizo con los paréntesis también se llevó a cabo en el IFUNAM, habiéndose obtenido el espectro nuclear, o sea las energías características y discretas, del núcleo 210Bi, empleando una fuerza nuclear bastante compleja. Se explicaron así por primera vez las observaciones experimentales sobre este núcleo.

A partir de este momento, los físicos teóricos mexicanos enfocan su actividad al uso de las simetrías y su influencia en las propiedades nucleares. Tal vez una palabra sobre la importancia de este campo no esté fuera de lugar aquí. La simetría en física es un concepto muy profundo, que atañe a las propiedades mismas del espacio y del tiempo. Supóngase, por ejemplo, que el espacio es homogéneo, esto es, que tiene las mismas propiedades en todos los puntos. Esto implica de inmediato que no puede haber fuerzas distintas de cero en ningún lugar y, según las leyes de la mecánica (tanto clásica como cuántica), la velocidad de una partícula que se moviera en este espacio homogéneo sería constante. De la simetría, que en este caso es la homogeneidad del espacio, se concluye que una cantidad, en este caso la velocidad de una partícula, es constante, es decir, se conserva. Simetría implica conservación y, claramente, la existencia de una cantidad conservada en la práctica ayuda a resolver el problema de describir el movimiento del sistema físico.

En el caso nuclear, el sistema es tan complejo que se dan sólo simetrías en forma aproximada. Se busca, sin embargo, simplificar la forma de la fuerza nuclear para que sea invariante frente alguna operación y exista entonces alguna cantidad que se conserve. En esta búsqueda de simetrías aproximadas y de consecuencias físicas en la estructura del núcleo, se trabajó en el IFUNAM, desde principios de los años sesenta hasta bien entrada la década. Se desarrollaron nuevos conceptos matemáticos, técnicas de cálculo novedosas y se aplicaron a núcleos ligeros como el 18O, 18F y 20Ne. En este último caso, se explicó con un cálculo aproximado del modelo de capas y empleando una interacción muy compleja, casi realista, un espectro de tipo colectivo. Los dos modelos extremos del núcleo empezaban a convergir. Estos trabajos fueron considerados en la Conferencia Internacional de Física Nuclear, que tuvo lugar en Tokio en 1967, como algunos de los avances importantes para entender el núcleo, logrados en esos años.

Por su lado, la física nuclear experimental continuaba su avance, aumentando la energía de los aceleradores y empleando cada vez mejores técnicas de detección y análisis. Al llegar los años sesenta, fue claro que para continuar el desarrollo de las investigaciones nucleares experimentales en nuestro país, era necesario adquirir equipo más poderoso. El gobierno de Estados Unidos donó al IFUNAM un nuevo acelerador, el dinamitrón, que tenía más energía que el antiguo Van de Graaff y, sobre todo, un haz de proyectiles de mayor corriente. Sin embargo, esta nueva adquisición no fue suficiente y hubo que emprenderse gestiones para la creación de un gran laboratorio nuclear, que habría de instalarse en Salazar, Estado de México. a unos 30 kilómetros de la capital. En el que sería el Centro Nuclear de México, se instalaron dos grandes máquinas, un Van de Graaff Tandem y un reactor Triga. El grupo de físicos que trabajaba en el IFUNAM se fraccionó al ir a trabajar varios de ellos con el nuevo Tandem a la entonces Comisión Nacional de Energía Nuclear. Se tuvo que enfrentar entonces enormes fallas de infraestructura y la acción no resultó tan fructífera como en la década anterior. De hecho, México perdió entonces su liderazgo en América Latina; en la actualidad Brasil y, próximamente, Argentina, cuentan con laboratorios nucleares más complejos.

En los países avanzados, mientras tanto, se genera un nuevo tipo de física nuclear experimental: la física de iones pesados. Veamos qué significa esto. En los experimentos a que nos referimos antes se hacía chocar contra un blanco cualquiera un proyectil ligero. Es decir, el haz de partículas que se podía acelerar estaba formado por núcleos con pocos nucleones: un protón, un deuterón, si acaso un núcleo de helio o partícula a. No era posible usar núcleos más pesados porque éstos, al estar cargados positivamente, eran repelidos fuertemente por el blanco también cargado positivamente. Para vencer esta repulsión fue necesario aumentar la energía de los aceleradores y esto implicó generar nuevas técnicas, nuevos materiales, en fin, el desarrollo de más tecnología. El Van de Graaff Tandem fue uno de estos ingeniosos desarrollos: se ponía un acelerador en serie con otro, de tal manera que los proyectiles eran acelerados dos veces y adquirían más energía. Ahora es posible hacer chocar un núcleo pesado contra otro y toda una visión diferente del núcleo se abre. Por así decirlo, los experimentos anteriores tan sólo rascaban la superficie del núcleo, mientras que ahora es posible ir a su interior.

Un grupo grande de físicos, tanto teóricos como experimentales, trabaja ahora en México en la física nuclear de iones pesados. Se ha realizado, en colaboración con investigadores de los laboratorios de Oak Ridge y de Berkeley, un conjunto de reacciones entre iones pesados. Y desde el punto de vista teórico se trabaja en modelos para entender estos resultados. Recientemente, se ha avanzado en la formulación del modelo colectivo y sus simetrías, en el estudio estadístico de los espectros y de las reacciones nucleares y en el estudio del modelo de partículas independientes en sus versiones más actuales.

ÍndiceAnteriorPrevioSiguiente