IX. LA EVOLUCIÓN CÓSMICA

EL ORIGEN DE LAS ESTRELLAS Y LAS GALAXIAS

HASTA ahora hemos descrito la evolución del Universo como si su densidad fuera homogénea en todo el espacio, una suposición que es válida mientras se consideren regiones muy grandes con respecto a los cúmulos de galaxias. Pero, en una escala más pequeña, la distribución de la materia en el Universo dista mucho de ser uniforme; por el contrario, se encuentra concentrada en estrellas, que forman galaxias, que a su vez se agrupan en cúmulos, separados entre sí por inmensas regiones casi totalmente vacías. Una teoría cosmológica no puede ser completa si no explica también el origen de la estructura a "pequeña" escala del Universo. Vamos a considerar este problema a continuación.

Más lejos se mira en el Universo y más atrás se ve en el tiempo, por la demora de la luz en recorrer las distancias cósmicas. A medida que han ido mejorando las técnicas de observación se han descubierto galaxias cada vez más lejanas sin que su abundancia parezca disminuir. Este hecho indica que las galaxias se formaron poco después de la Gran Explosión, seguramente antes de que transcurrieran unos cinco mil millones de años. Estamos seguros de que no han nacido galaxias recientemente porque nunca se ha encontrado alguna cercana en pleno proceso de formación.

Si pudiéramos ver suficientemente lejos en el Universo, tendríamos una visión del momento mismo en que empezaron a surgir las galaxias; desgraciadamente, las observaciones astronómicas se vuelven más difíciles al aumentar las distancias y se hacen necesarios telescopios cada vez más potentes. (En los últimos años, los astrónomos han detectado unos misteriosos objetos, los cuasares, que se encuentran en los confines del Universo visible, y que podrían ser galaxias en plena formación; volveremos a ellos más adelante.)

El problema de explicar el origen de las galaxias es uno de los más difíciles de la astrofísica moderna, pues prácticamente no se cuenta con observaciones en las cuales basarse. Por el momento, la teoría más aceptada es que las galaxias también se formaron por el mecanismo que, se cree, dio origen a las estrellas: la contracción gravitacional.1 Por lo tanto, vamos a tratar primero del nacimiento de las estrellas.

La mayoría de los astrónomos piensa que las estrellas se forman a partir de las llamadas nubes moleculares, que son gigantescas nubes de gas denso y frío. Un pedazo de la nube se colapsaría sobre sí misma por su propia fuerza gravitacional si no fuera porque el gas que lo forma se encuentra relativamente caliente y, por lo tanto, ejerce una presión que compensa la atracción gravitacional. Si la distribución del gas fuera perfectamente homogénea, la presión y la gravedad mantendrían el equilibrio por tiempo indefinido. Sin embargo, en situaciones reales, una parte de la nube puede ser ligeramente más densa que otra y romper, de este modo, el delicado balance entre presión y gravedad. Esto sucede si la masa de un pedazo de la nube excede cierto valor crítico, de modo tal que la fuerza de gravedad vence definitivamente y el pedazo empieza a contraerse, aumentando su densidad. Este proceso se llama colapso gravitacional. Lo interesante es que, no importa cuán pequeña haya sido la perturbación inicial de la densidad, la contracción procederá inevitablemente. A medida que se comprime el gas, aumenta su presión hasta llegar a compensar la fuerza gravitacional; en ese momento se detiene la contracción. La nueva configuración de equilibrio al que se llega después de una evolución complicada es una estrella (Figura 40); la nube de gas también puede fragmentarse en varios pedazos más pequeños durante el colapso, y cada pedazo formar una estrella o un planeta.




Figura 40. Una pequeña perturbación de la densidad en un medio homogéneo puede producir el colapso gravitacional de una región cuya masa contenida exceda un valor crítico.


Una estrella es una gigantesca bola de gas incandescente que se mantiene en equilibrio gracias a dos fuerzas que se compensan exactamente: la presión del gas caliente, que tiende a expander la estrella, y la gravitación de la misma masa estelar, que tiende a contraerla (Figura 41). Una estrella obtiene energía para brillar de las reacciones nucleares que se producen en su centro, donde se dan temperaturas de varios millones de grados Kelvin. En ese sentido, una estrella es una gigantesca bomba atómica que funciona continuamente. El combustible principal es, por lo general, el hidrógeno que, al fusionarse para formar helio, libera grandes cantidades de energía. Otros procesos nucleares también son posibles, como veremos más adelante.






Figura 41. En una estrella, la presión y la gravedad se compensan mutuamente.

El nacimiento de una estrella por el colapso gravitacional de una nube gaseosa es un fenómeno en principio plausible. En la versión más simple de esta teoría, una galaxia sería originalmente una nube más o menos homogénea de gas a partir de la cual se formaron los miles de millones de estrellas que la componen. Desgraciadamente, el proceso de contracción queda fuera de las posibilidades actuales de observación, y hasta ahora no se ha podido detectar una sola nube colapsándose para formar estrellas. Por esta razón, no se puede afirmar que el problema de la formación estelar haya sido resuelto en todos sus detalles.

El problema se agrava si tratamos de explicar el origen de las galaxias también por un proceso de colapso gravitacional, tal como lo acepta la mayoría de los astrónomos modernos. En principio, podemos suponer que las galaxias se formaron porque la materia cósmica no era perfectamente homogénea en los primeros instantes del Universo, sino que había regiones ligeramente más densas que el promedio: inhomogeneidades o "grumos" cósmicos. Estos grumos empezaron a contraerse por su propia gravedad y dieron lugar, con el paso del tiempo a las galaxias —más precisamente, a condensaciones gaseosas a partir de las cuales se formaron estrellas—. El inconveniente de esta teoría es que la expansión cósmica retarda considerablemente la velocidad de contracción. Se ha podido calcular que si una inhomogeneidad se formó un segundo después de la Gran Explosión, toda la edad del Universo no le sería suficiente para transformarse en algo parecido a una galaxia (por el contrario, un "grumo" en una nube molecular sí se podría colapsar, bajo ciertas condiciones, en un tiempo razonable para formar una estrella).

Sin embargo, los partidarios del colapso gravitacional como origen de las galaxias señalan que la contracción de un grumo pudo iniciarse, en principio, en cualquier momento; y si se quiere formar una galaxia, se puede fijar el inicio, de la contracción de épocas tan remotas como las anteriores a la inflación. De hecho, las teorías modernas predicen que, en esos instantes iniciales, se generó todo un "zoológico" de objetos raros, "cuerdas" y "paredes" según la terminología moderna, que, después de la inflación, pudieron sobrevivir y funcionar como "semillas" para formar galaxias. Los físicos interpretan a estos extraños objetos como pedazos inhomogéneos del vacío cuántico primordial; aún es temprano para afirmar si realmente existen —lo cual tendría repercusiones muy importantes en la física— o si, por el contrario, serán relegados al olvido. Sea lo que fuere, lo interesante de las conjeturas mencionadas es que se plantea el problema de buscar el origen de las galaxias en las propiedades de la materia a densidades y temperaturas extremadamente altas (muy superiores a las que se podrían alcanzar en un laboratorio terrestre).

Existen otras teorías, además de la inestabilidad gravitacional, sobre el origen de las galaxias. Una muy interesante (formulada por el astrofísico soviético L. M. Ozernoi) es la teoría de la turbulencia cósmica, según la cual el Universo primordial se encontraba en un estado caótico, lleno de gigantescos remolinos de materia, tal como en un líquido turbulento. Después del momento de la recombinación, los remolinos sobrevivieron y se convirtieron en galaxias. De ser correcta esta hipótesis, el hecho de que muchas galaxias tengan forma de rehilete no sería casual.

Según otra hipótesis formulada por el astrónomo armenio Victor Ambartzumian, las galaxias se formaron, no por condensación de materia, sino por el proceso contrario: una expansión a partir de un núcleo primordial extremadamente denso y compacto. Tales núcleos podrían ser pedazos del Universo que no participaron de la expansión universal, sino que quedaron rezagados durante un largo tiempo. Hasta ahora, no se le ha podido encontrar un fundamento teórico a esta conjetura —por lo menos dentro del marco de la física contemporánea—, razón por la cual no ha llegado a ser tan popular como otras teorías. Sin embargo, hay que reconocer que esta hipótesis es perfectamente compatible con todas las observaciones astronómicas de las que disponemos. Como veremos en el capítulo X, el fenómeno de eyección de masa desde una región muy compacta es bastante común en el Universo y ocurre en condiciones y escalas muy variadas, mientras que la contracción de una distribución de masa nunca se ha podido observar. Además, Ambartzumian predijo, con base en su hipótesis, que fenómenos muy violentos debían de ocurrir en regiones sumamente compactas en los núcleos de las galaxias, lo cual ha sido confirmado plenamente en los últimos años.

LA COCINA CÓSMICA

Como vimos en el capítulo VII, la composición de la materia cósmica después de la formación del helio era de 75% de hidrógeno, 25% de helio y una leve traza de otros elementos. El lector seguramente habrá notado que esa composición química en nada se parece a la que se tiene en nuestro planeta Tierra. Nosotros mismos estamos hechos de elementos como el carbono, el oxígeno, el calcio y muchos más, respiramos una mezcla de oxígeno y nitrógeno, utilizamos metales como el hierro, el aluminio, el cobre y otros. El hidrógeno se encuentra en las moléculas del agua; pero la presencia del helio en la Tierra es tan poco notoria que fue descubierto primero en el Sol. ¿De dónde vino toda esta diversidad de elementos si la composición inicial del Universo consistía prácticamente de hidrógeno y helio? La respuesta está en los astros.

Los alquimistas tenían razón al pensar que los elementos pueden transmutarse unos en otros, pero buscaron equivocadamente ese proceso en hornos y alambiques, cuando necesitaban temperaturas de millones de grados. La transmutación se produce naturalmente en el interior de las estrellas. Veamos cómo evolucionan una vez que se formaron, ya sea por contracción gravitacional o algún otro mecanismo. Una estrella empieza a brillar en el momento en que la temperatura en su interior llega a ser suficientemente alta para desencadenar reacciones nucleares; estas temperaturas se producen por la presión extremadamente elevada a la que se encuentra sometida la región central de la estrella; a su vez, la presión es mayor mientras más masiva es la estrella. Los núcleos de nuevos elementos se generan por fusión nuclear, tal como en los primeros minutos del Universo, pero la diferencia fundamental es que una estrella dispone de miles o millones de años para fabricar esos elementos, mientras que el Universo se enfrió rápidamente al expandirse.

Inicialmente, son los núcleos de hidrógeno (protones) los que se fusionan entre sí para producir núcleos de helio (Figura 42). La masa de un núcleo de helio es un poco menor que la masa por separado de los dos protones y dos neutrones que lo componen, y la diferencia de masa es justamente la que se convierte en la energía (según la fórmula de Einstein E = mc2) que hace brillar a la estrella. Eventualmente, el hidrógeno en el núcleo puede llegar a agotarse, pero entonces aparecen nuevas reacciones. Si la temperatura central excede de unos doscientos millones de grados, los núcleos de helio se fusionan entre sí y terminan produciendo núcleos de carbono y oxígeno. A temperaturas aún mayores, el carbono produce oxígeno, neón, sodio y magnesio. Y así sucesivamente: si la temperatura central excede de unos 3 x 109 grados, se pueden formar todos los elementos químicos cuyo peso atómico es menor que el del fierro. Los elementos más pesados que el fierro no pueden fabricarse por la fusión de núcleos más ligeros si no se les suministra energía adicional.2 Después de un comportamiento bastante complicado, la estrella agotará su combustible disponible y se apagará, con cierta composición química que depende esencialmente de su masa.







Figura 42. El ciclo protón-protón

La masa de una estrella es el parámetro principal que determina sus propiedades físicas y su evolución. De hecho, no pueden existir estrellas con menos de una centésima parte de la masa del Sol, pues la temperatura y presión centrales serían insuficientes para iniciar reacciones nucleares: más que una estrella, se tendría un planeta. En el otro extremo, estrellas con más de cien veces la masa del Sol serían inestables y se desbaratarían rápidamente. En contra de lo que podría esperarse, mientras más masiva es una estrella, menos tiempo brilla: si bien dispone de más combustible nuclear, lo consume mucho más rápidamente que una estrella con menos masa. Los astrofísicos han calculado que una estrella extremadamente masiva quema todo su combustible en unos 10 000 años, mientras que una estrella como el Sol puede brillar modestamente durante diez mil millones de años (incidentalmente, el Sol se encuentra a la mitad de su vida).

En consecuencia de lo anterior, podemos afirmar con certeza que las estrellas que vemos brillar en el cielo tuvieron fechas de nacimiento muy distintas, y que, en la actualidad, siguen naciendo y muriendo. Antes de apagarse definitivamente, una estrella arroja al espacio parte de su masa, que incluye los elementos que procesó. Veamos cómo ocurre este fenómeno.

Una estrella cuya masa no excede de unas seis veces la del Sol tiende a arrojar una pequeña fracción de su material constitutivo en formas muy diversas. La nebulosa que se ve en la figura 11 es un ejemplo de este proceso; se cree que el Sol formará una nebulosa semejante al final de su vida. Después, a medida que se enfría la estrella por agotarse su combustible nuclear, se irá comprimiendo por la fuerza de su propia gravitación. Si la masa de la estrella no excede una vez y media la del Sol, terminará su evolución convirtiéndose en una enana blanca: una estrella unas cinco veces más grande que la Tierra, tan comprimida que una cucharada de su material pesa más de cien kilogramos.

Si la masa es ligeramente superior a una vez y media la del Sol, la estrella se contrae todavía más. Los protones y electrones que la constituyen se comprimen tanto que se fusionan entre sí para formar neutrones. El resultado final es una estrella de neutrones, cuyo radio no excede de unos 10 kilómetros y es tan compacto que una cucharada de su material pesa miles de millones de toneladas. Los llamados pulsares, que fueron descubiertos hace algunos años, son estrellas de neutrones con un campo magnético muy intenso y que giran como faros, emitiendo pulsos en ondas de radio.

Si la masa de la estrella excede de unas seis veces la del Sol, su destino final es completamente distinto. Al término de su evolución, la estrella sufre una explosión catastrófica llamada supernova: en unas cuantas horas, se vuelve tan brillante como cien millones de Soles y puede verse aun si se encuentra en galaxias muy lejanas; ese brillo dura varios días, después de los cuales se va apagando paulatinamente. La última supernova observada en nuestra propia galaxia ocurrió en 1604; se cuenta que era visible de día y alumbraba como la Luna llena durante la noche.3 Otra ocurrió en 1054, según los registros de los astrónomos chinos y japoneses; lo que queda de la estrella que explotó es actualmente la nebulosa del Cangrejo (Figura 43). Para los fines que nos interesan, mencionemos solamente que una explosión de supernova genera energía suficiente para fabricar por fusión nuclear todos los elementos más pesados que el hierro y, además, arrojarlos violentamente al espacio para enriquecer el gas interestelar con nuevo material. Luego, a partir de ese gas, se formarán nuevas estrellas y planetas como el Sol y la Tierra, y quizás también otros seres vivos. Los átomos de nuestro cuerpo provienen de estrellas que dejaron de brillar hace más de cinco mil millones de años. En palabras del poeta:






Figura 43. La nebulosa del Cangrejo.


Retrocede, igualmente, lo que antes fue de la tierra, a las tierras, y lo que se envió desde las playas del éter, de nuevo devuelto, eso reciben los templos del cielo. Y no acaba la muerte las cosas de modo tal que destruya de la materia los cuerpos [átomos], pero su reunión los disipa. De allí, uno a otros se junta, y hace todas las cosas de modo que conviertan sus formas y muden colores y tomen sentidos y en un punto de tiempo los pierdan...4

NOTAS

1 Sugerida por Isaac Newton y estudiada teóricamente por el astrofísico inglés James Jeans.

2 Un núcleo de uranio se puede fisionar en dos núcleos más ligeros y liberar energía; esa misma energía es la que se debe añadir a los dos núcleos producidos para volver a formar uno de uranio. El proceso contrario, fusión con liberación de energía, se da entre los núcleos ligeros, como el hidrógeno y el helio.

3 Tales supernovas han ocurrido, en promedio, dos o tres veces por milenio; quizás con un poco de suerte, presenciemos una en nuestra época.

4 Lucrecio, De rerum natura, II 999-1006; traducción de Rubén Bonifaz Nuño.

 

ÍndiceAnteriorPrevioSiguiente