VII. LA FÍSICA CUÁNTICA Y RELATIVISTA

HAGAMOS una pausa en el relato para regresarnos a 1905, año en que Albert Einstein fue al fondo de las cosas y revisó con esmero los conceptos de espacio y de tiempo por entonces vigentes. Einstein creó la teoría de la relatividad, según la cual no puede haber ninguna partícula que se mueva con una velocidad mayor que la de la luz en el vacío. De esta simple proposición se deduce que el tiempo fluye de manera relativa al observador y que depende de su estado de movimiento. Esta críptica frase quiere decir, entre otras cosas, que dos eventos simultáneos para un físico cualquiera que los observe, no lo serían para otro observador que se moviera respecto al primero. El tiempo absoluto de Newton cede su lugar en la física a una velocidad absoluta, la de la luz, que es la máxima existente en la naturaleza. Cuando la velocidad de un cuerpo cualquiera es mucho menor que la de la luz, ésta aparenta ser infinita; ya no existe, para todo propósito práctico, un límite a la velocidad de cuerpo material alguno. La mecánica relativista predice entonces lo mismo que la newtoniana. En otros términos, la relatividad sólo es crucial al tratar con partículas muy rápidas, que se mueven con velocidades cercanas a la de la luz. Por ello, en nuestra vida diaria los efectos relativistas son despreciables y el tiempo parece absoluto. Por ejemplo, la velocidad de un avión comercial hoy en día es del orden de 900 km/h, que es mil millones de veces menor que la velocidad c de la luz en el vacío, la cual vale 300 mil kilómetros por segundo: ni aun con estos aviones notaríamos la diferencia entre las teorías newtonianas y las relativistas.

Otra consecuencia de la relatividad —que será crucial para entender el resto de nuestra historia— es la equivalencia entre masa m y energía en reposo E:

E = mc²

La relación anterior nos dice que la masa se puede convertir en energía, y viceversa: si tenemos la suficiente cantidad de energía podremos crear partículas con masa. Esto no es ciencia ficción, pues hoy se comprueba día tras día con la operación de las plantas nucleares, por citar tan sólo un caso.

Cuando se definió la teoría cuántica a mediados de los veintes, la física relativista había ya sentado sus reales en la ciencia. Nada más natural, entonces, que buscar una teoría que fuese al mismo tiempo cuántica y relativista. Esto fue, precisamente, lo que grandes físicos de la época —Wolfgang Pauli y Paul Dirac, entre otros— intentaron. La empresa no resultó tan fácil, sin embargo; hoy día, cincuenta años después, la física cuántico-relativista adolece de varias fallas. No obstante, algunos resultados están firmemente establecidos y constituyen parte esencial de la física moderna.

Para nuestro relato, tres de estos resultados son cruciales: la existencia de las antipartículas, la relación entre espín y estadística y la existencia de los portadores de la interacción.

Las antipartículas fueron sugeridas por Dirac en 1931, al buscar una ecuación relativista y cuántica que rigiera el comportamiento de los electrones. La conclusión inevitable se vino encima al gran físico inglés: si existe una partícula también debe existir la correspondiente antipartícula. Éstas tienen muchas propiedades idénticas a sus respectivas partículas pero difieren en otras, en su carga electrica, por ejemplo: si un electrón tiene carga negativa, el antielectrón la tiene positiva; y el antiprotón debe estar cargado negativamente con una carga -e, idéntica en valor a la del electrón. Por esta última peculiaridad, Dirac mismo se confundió al principio y pensó que, tal vez, protón y electrón serían uno la antipartícula del otro. Sin embargo, esto no es cierto: partícula y antipartícula siempre tienen además de igual espín la misma masa.

La confusión de Dirac pronto se aclaró, sin embargo. Un joven físico norteamericano, por aquel entonces de veintisiete años y a escasos dos de haber obtenido el doctorado, estudiaba fotografías de las trazas que dejaban en una cámara de niebla los rayos cósmicos. Éstos, muy energéticos, no se podían desviar ni aun en campos magnéticos muy intensos. La desviación depende de la masa y de la carga eléctrica de la partícula afectada y, sobre todo, de su energía: a mayor carga más curvatura y la desviación es menor cuando la masa y la energía crecen. Por ello Anderson blindó la cámara de niebla con plomo para bajar la energía de las partículas cósmicas, que luego se curvaban dentro del campo magnético. Así trabajaba Anderson con paciencia, cuando se cruzó por su camino una partícula, en todo idéntica al electrón pero que se curvaba al revés, como si tuviera la carga opuesta. Pronto se dio cuenta que había descubierto la antipartícula del electrón, el antielectrón, que él llamó positrón. No cabe duda que Anderson tuvo más suerte con su cámara de niebla que McCusker con la suya, pues sus colegas sí reconocieron su descubrimiento del positrón.

Poco después se demostró la propiedad más singular de la pareja partícula-antipartícula. El encuentro de las dos resulta explosivo, pues se aniquilan, dejando como rastro tan sólo energía en forma de rayos g, de cuantos de luz. Como al cuark en la década de los sesentas, al positrón lo perseguían varios grupos de investigadores en todo el mundo. Además de Anderson, que trabajaba en California, Blackett en Manchester y los esposos Irene (hija de Marie) Curie y Federico Joliot-Curie en París también buscaban afanosamente comprobar o desmentir al gran Dirac. Anderson se les adelantó, pero tres años después Blackett tomó venganza: mostró que un rayo g, al pasar a través de plomo, podía desaparecer dejando un par electrón-positrón. ñY esto siempre ocurría de acuerdo con la fórmula famosa de Einstein, E=mc2, por lo que fue la demostración experimental más dramática de esta ecuación! Los dos procesos, aniquilación partícula-antipartícula y creación de pares, inverso uno del otro, son pues posibles, tal como indica la teoría cuántico-relativista. En 1932 ocurren, por lo tanto, dos grandes descubrimientos que, en buena medida, marcan el inicio de lo que hoy llamamos física de partículas elementales: los hallazgos del neutrón, que junto con el protón forma el núcleo, y del positrón, que es el antielectrón. Empieza así a poblarse el zoológico del mundo subnuclear, lleno de partículas pequeñas y veloces. A los primeros en llegar, el protón y el electrón, se agregan en ese año el positrón y el neutrón.

El segundo resultado de la teoría cuántico-relativista es el teorema de Pauli sobre la relación entre espín y estadística. El espín ya lo hemos descrito; se refiere a una rotación intríseca de las partículas cuánticas. Es un concepto totalmente cuántico, como lo prueba el hecho de que el espín se mide en unidades de , la constante de Planck. Cuando puede despreciarse, lo cual es posible al tratar con cuerpos grandes, el espín no aparece. Pero al considerar sistemas microscópicos, cuyas variables dinámicas toman valores a la escala de , el espín puede valer un múltiplo entero de , como 0, ,2,..., o un múltiplo semientero de la misma constante, tal y como /2, 3/2,.... El espín no es sólo un concepto cuántico, sino también relativista; aunque podría entenderse con la mecánica cuántica no relativista, surge de la manera más natural de la misma ecuación relativista de Dirac que se usa para describir electrones y positrones. Antes de Dirac, y para explicar el experimento de Stern-Gerlach como ya mencionamos, hubo que parchar la teoría de Schrñdinger, añadiéndole el concepto de espín.

El otro término, estadístico, no lo hemos usado como tal, aunque su significado ya lo empleamos. Se dice que una partícula obedece la estadística de Fermi-Dirac cuando es antisociable por esencia, cuando es un fermión que actúa de acuerdo con el principio de exclusión; y se dice que una partícula obedece la estadística de Bose-Einstein cuando se comporta de manera contraria, cuando le gusta estar cerca de sus congéneres; es entonces un bosón no regido por el principio de Pauli.

Pues bien, el teorema que Pauli demostró usando la teoría cuántica-relativista es el siguiente: las partículas elementales se dividen en dos y solamente en dos clases, los fermiones y los bosones; aquellas que son fermiones tienen un espín semientero, mientras que las partículas de espín entero obedecen la estadística de Bose-Einstein. Nótese que, entonces, el electrón y el positrón, así como el neutrón y el protón son, como ya dijimos, fermiones. El cuanto de luz, el fotón, por su lado, tiene espín igual a h y es, en consecuencia, un bosón. Debemos hacer notar que el teorema de Pauli requiere que las partículas sean elementales, es decir no compuestas, y que supone la posibilidad de hallarlas libres.

ÍndiceAnteriorPrevioSiguiente