III. INTERACCIÓN DE LA RADIACIÓN CON LA MATERIA
TODOS los empleos de la radiación están basados en cualquiera de las dos siguientes propiedades: penetración de la materia y depósito de energía. Las radiografías, por ejemplo, son posibles gracias a que los rayos X penetran de manera distinta a los diferentes materiales. Por su lado, en la radioterapia se busca depositar energía en los tejidos malignos para eliminarlos. Lo que le sucede a la radiación al pasar por la materia es, por tanto, de primordial interés en varios campos. Uno es el ya mencionado de la medicina. Otro, que más nos incumbe aquí, el de la protección radiológica. Además, la presencia misma de la radiación en general no es evidente si no se cuenta con detectores espaciales, cuya función es hacernos notar los efectos que la radiación les induce.
Si los orígenes de las radiaciones son atómicos o nucleares, también es de esperarse que sus efectos se inicien a nivel atómico o nuclear. Imaginemos a nivel microscópico que una de las radiaciones que hemos descrito penetra en un material. Lo que esta radiación escuentra a su paso son electrones y núcleos atómicos, pero en general mucho más electrones que núcleos (por cada núcleo hay Z electrones). Por lo tanto, en términos generales las interacciones con los electrones serán mucho más abundantes que con los otros núcleos. Los efectos más comunes son la ionización y la excitación atómica del material; menos numerosos son los cambios estructurales. A final de cuentas, el depósito de energía en el material da lugar a una elevación de temperatura.
La energía promedio necesaria para producir ionización en un elemento depende de su número atómico. En los elementos ligeros es del orden de decenas de eV; para aire se acepta el valor de 34 eV. Aunque no toda la energía se va a ionizar, esto significa que una sola radiación de energía de varios MeV es capaz de producir un total de unos 100 000 pares ión-electrón en aire. La forma detallada en que se produce esta ionización es distinta para cada tipo de radiación y su energía. Conviene separar los tipos de radiación en cuatro grupos según su interacción con la materia: 1) las partículas pesadas cargadas positivamente, que incluyen partículas alfa, protones e iones pesados energéticos; 2) las partículas ligeras cargadas, como electrones, betas y positrones; 3) las radiaciones electromagnéticas, incluyendo rayos X y gamma; 4) los neutrones. La figura 12 esquematiza los rasgos principales de estos procesos.
![]()
Figura 12. Resumen de cómo los distintos tipos de radiación interaccionan con la materia.
III.2. PASO DE PARTÍCULAS ALFA Y OTROS IONES POR LA MATERIA
Las partículas alfa ( y otros iones pesados) tienen carga positiva y carga grande. Al penetrar la materia atraen a su paso eléctricamente a los electrones cercanos, produciendo ionización de estos átomos. Pierden una pequeña fracción de su energía en cada ionización producida, frenándose gradualmente hasta llegar al reposo. Cuando su velocidad ya se ha reducido de manera sensible, atrapan electrones del material y finalmente se detienen, constituyendo átomos extraños de helio dentro del material.
Dado que su masa es mucho mayor que la de los electrones que se encuentran a su paso, su trayectoria es esencialmente recta. Sólo muy ocasionalmente chocan con un núcleo y se produce una desviación. Como son fuertemente ionizantes, pierden su energía cinética pronto, y el alcance de las partículas alfa en cualquier material es mucho menor que el de las otras radiaciones. Además, el alcance es mayor mientras mayor es la energía de la partícula. En sólidos es típicamente de unas micras. Las partículas alfa provenientes de una fuente radiactiva tienen todas el mismo alcance, en virtud de que son monoenergéticas.
Para estimar el alcance de las partículas alfa en aire se puede usar la siguiente fórmula empírica
donde el alcance R está dado en centímetros y la energía E la de partícula alfa está en MeV. En alcance en sólidos se obtiene a partir del alcance en aire de acuerdo con la ecuación:
R (sólido) = 3.2 x 10-4 (aire)
,
donde A es el número de masa del sólido y p es su densidad en g/ cm². Resulta del orden de una diezmilésima del alcance en aire.
III.3. EL PASO DE ELECTRONES POR LA MATERIA
Los electrones energéticos (y las betas negativas) tienen carga eléctrica, y su masa es la misma que la de los electrones atómicos que se encuentran a su paso. De hecho son indistinguibles de los electrones del material. Así como las partículas alfa, van avanzando y perdiendo energía al ionizar y excitar los átomos del material, hasta frenarse totalmente, pero con la diferencia de que sus trayectorias no son líneas rectas y, por lo tanto, su alcance no está tan bien definido como en el caso de las alfas.
Esto se debe a que en choques entre partículas de la misma masa puede haber desviaciones importantes de la dirección inicial del proyectil.
El alcance de electrones de MeV de energía en sólidos es típicamente de unos milímetros, y en aire es de unas decenas de centímetros. Cuando han perdido toda su energía se detienen, constituyendo entonces una carga eléctrica extra colocada dentro del material, confundiéndose con los demás electrones. Como las betas provenientes de una fuente radiactiva no son monoenergéticas (por la energía que se lleva el neutrino), su alcance es variado.
Cuando un electrón energético se avecina a un núcleo, es desviado bruscamente por la gran carga eléctrica del núcleo. Este desvío provoca la emisión de un fotón de rayos X, cuya emisión se denomina radiación de frenamiento o bremsstrahlung, y es un mecanismo considerable de pérdida de energía de los electrones. El desvío es más importante entre mayor sea el número atómico Z del material frenador. Es lo que produce la radiación proveniente de un tubo generador de rayos X.
Los positrones siguen esencialmente el mismo proceso de frenado que los electrones negativos, salvo al final de su trayectoria. Siendo antimateria, no pueden existir por mucho tiempo en un mundo de materia. El proceso normal que sufren una vez que se ha frenado casi totalmente es el siguiente. En virtud de que tienen carga positiva, se asocian temporalmente a un electrón del material, formando un "átomo" llamado positronio, en el que el electrón y el positrón giran uno alrededor del otro. El positronio tiene una vida media del orden de 10-10 segundos. Luego se aniquilan las dos partículas, emitiendo radiación electromagnética (rayos gamma). Las masas del electrón y del positrón son de 0.51 MeV cada uno, así que hay 1.02 MeV disponibles al aniquilarse. Normalmente se emiten dos rayos gamma, cada uno de 0.51 MeV; ésta se llama radiación de aniquilación.
III.4. EL PASO DE LA RADIACIÓN ELECTROMAGNÉTICA POR LA MATERIA
Los rayos X y gamma, al no tener carga, mo pueden ser frenados lentamente por ionización al atravesar un material. Sufren otros mecanismos que al final los hacen desaparecer, transfiriendo su energía , pueden atravesar varios centímetros de un sólido, o cientos de metros de aire, sin sufrir ningún proceso ni afectar la materia que cruzan. Luego sufren uno de los tres efectos y depositan allí gran parte de su energía. Los tres mecanismos de interacción con la materia son: el efecto fotoeléctrico, el efecto Compton y la producción de pares. Se describen en forma gráfica en la figura 13.
a) El efecto fotoeléctrico consiste en que el fotón se encuentra con un electrón del material y le transfiere toda su energía, desapareciendo el fotón original. El electrón secundario adquiere toda la energía del fotón en forma de energía cinética, y es suficiente para desligarlo de su átomo y convertirlo en proyectil. Se frena éste por ionización y excitación del material
b) En el efecto Compton el fotón choca con un electrón como si fuera un choque entre dos esferas elásticas. El electrón secundario adquiere sólo parte de la energía del fotón y el resto se la lleva otro fotón de menor energía y desviado.
c) Cuando un fotón energético se acerca al campo eléctrico intenso de un núcleo puede suceder la producción de pares. En este caso el fotón se transforma en un par electrón- positrón. Como la suma de las masas del par es 1.02 MeV, no puede suceder si la energía del fotón es menor que esta cantidad. Si la energía del fotón original en mayor que 1.02 MeV, el excedente se lo reparten el electrón y el positrón como energía cinética, pudiendo ionizar el material. El positrón al final de su trayecto forma un positronio y luego se aniquila produciéndose dos fotones de aniquilación, de 0.51 MeV cada uno.
Cada uno de los efectos predomina a diferentes energías de los fotones. A bajas energías (rayos X) predomina el fotoeléctrico; a energías medianas (alrededor de 1MeV) , el Compton; a energías mayores, la producción de pares.
![]()
Figura 13. Las tres maneras principales de que los rayos X y los rayos y interaccionan con la materia. En los tres casos se producen electrones energéticos.
III.5. ATENUACIÓN DE LOS RAYOS X Y GAMMA
Supóngase que se envía un haz delgado de intensidad I0 (número de fotones) de rayos X o gamma monoenergéticos sobre un material de espesor x, y se coloca detrás de éste un detector, como lo muestra la figura 14. En el material, el haz será atenuado por las tres interacciones ya mencionadas, llegando al detector sólo la cantidad I, menor que I0. Según se muestra en el Apéndice III, la atenuación obedece la ley exponencial:
I = Ioe-mx , donde e es la base de los logaritmos naturales, y m se llama coeficiente lineal de atenuación. Normalmente x se expresa en unidades de cm, por lo que m estará dado en cm-1.
![]()
Figura 14. Experimento de transmisión de radiaciones. El número de radiaciones absorbidas es Io -I, y depende del espesor x del absorbedor.
Figura 15. Curva exponencial de atenuación de rayos X o gamma. Se indican las capas hemirreductora y decimorreductora.
Nótese que la ecuación tiene la misma forma que la ley de decaimiento radiactivo. La figura 15 muestra una curva de atenuación típica. Cuando x= 0, o sea sin absorbedor, la intensidad medida I= I0. El valor del coeficiente lineal de atenuación m determina qué tan rápidamente cae la curva de atenuación. En analogía con la vida media, se puede definir la capa hemirreductora x1/2 como el grueso de absorbedor que reduce la intensidad inicial a la mitad. Dos capas hemirreductoras la reducen a una cuarta parte, y así sucesivamente, n capas hemirreductoras la reducen por un factor 1/2n. La capa hemirreductora está relacionada con el coeficiente lineal de atenuación según la ecuación
También se define la capa decimorreductora x 1/10 como el espesor que reduce la intensidad a una décima parte. Dos de éstas la reducen a un centésimo, y n capas decimorreductoras la reducen a un factor 110n. La capa decimorreductora se relaciona con m según la ecuación:
Una cantidad que se usa normalmente es el coeficiente másico de atenuación um, que se obtiene al dividir el coeficiente lineal entre la densidad p del material
Si las unidades de p son g/ cm³, las de um con cm²/ g.
Si se emplea el coeficiente másico de atenuación, la ley de atenuación queda en la forma
I = Io e- mm (px)
Los coeficientes lineal y másico de atenuación difieren de un material a otro, según sean bueno o malos absorbedores de rayos X y gamma. También sus valores dependen de la energía de la radiación. La figura 16 muestra un ejemplo de la variación del coeficiente másico de atenuación para un buen absorbedor, el plomo, según la energía. Allí se puede ver también la contribución relativa que ofrecen cada uno de los tres efectos de atenuación.
![]()
Figura 16. Coeficiente másico de atenuación de rayos X y gamma en plomo, según la energía del fotón. Se indica la contribución de cada uno de los tres efectos.
La absorción de energía por el material está relacionada por la atenuación, pero no son iguales. La atenuación en un experimento como el de la figura 14 implica absorción de energía sólo si se trata de efecto fotoeléctrico; en los otros dos efectos, la atenuación del haz inicial implica la absorción de sólo una parte de la energía de los fotones. Se define entonces un coeficiente de absorción ua, que siempre es menor o igual al de atenuación.
III.6. PASO DE NEUTRONES POR LA MATERIA
Como ya se vio, los neutrones tienen masa casi igual a la del protón, pero no tienen carga eléctrica. Sin embargo, se ven afectados por la fuerza nuclear. En consecuencia, no ionizan directamente a los materiales por no interaccionar con los electrones; el único efecto que pueden producir es chocar directamente con los núcleos. Como esto es poco probable, los neutrones pueden recorrer distancias de algunos centímetros sin sufrir ninguna colisión.
Cuando llegan a incidir directamente sobre un núcleo, puede suceder cualquiera de dos procesos: la dispersión elástica y la reacción nuclear (que incluye la dispersión inelástica, la captura radiactiva y la fisión nuclear). En algunas reacciones hay absorción de neutrones, en otras hay producción adicional.
La dispersión elástica se puede visualizar como el choque de dos bolas de billar, aunque en nuestro caso el blanco es siempre más pesado que el proyectil. Al chocar el neutrón con un núcleo, rebota en cualquier dirección, transfiriéndoles al núcleo una cantidad de energía cinética. Esta energía transferida es mayor entre más ligero sea el núcleo, y también es mayor si el núcleo sale hacia adelante. La energía transferida es a costa de la energía del neutrón incidente, por lo que éste es desviado en cada colisión y pierde una fracción de su energía, pero nótese que no desaparece. La dispersión elástica que produce el amyo efecto en el hombre es la siguiente:
1H+n en+1H En esta dispersión el neutrón puede transferir la totalidad de su energía al protón (1H), por tener ambos la misma masa.
En las reacciones nucleares el neutrón es absorbido por el núcleo, emitiéndose después otras radiaciones. Si sucede la llamada dispersión inelástica, el núcleo residual queda en estado excitado, y el neutrón emitido pierde una parte considerable de su energía. Cuando se trata de captura radiactiva, la emisión de un rayo gamma, desapareciendo el neutrón. En los elementos pesados como el uranio, los neutrones pueden inducir la fisión nuclear, con la cual se emiten dos fragmentos pesados de fisión y varios nuevos neutrones. Los neutrones pueden inducir muchos otros tipos de reacción nuclear, emitiéndose, por ejemplo, protones, partículas alfa, deuterones y combinaciones de éstos. La reacción nuclear inducida por neutrones que mayor daño produce en el hombre, sucede principalmente a bajas energías de neutrón:
14N+nñ p+14 C .En la mayoría de las reacciones productoras de neutrones, éstos son emitidos con energías del orden de varios MeV, denominándose rápidos. Al incidir en cualquier material, los neutrones rápidos sufren preferentemente dispersiones elásticas con los núcleos. van rebotando de núcleo en núcleo, perdiendo cada vez una fracción de su energía inicial, hasta que después de muchos choques (pueden ser varios cientos) su velocidad promedio es comparable con las velocidades térmicas de las moléculas. Se llaman entonces neutrones térmicos, y sus energías son del orden de 1/ 40 de eV. Los neutrones térmicos sufren más reacciones nucleares que los rápidos.
Los daños causados en los materiales por los neutrones de deben a varios efectos. En una dispersión elástica, por ejemplo, primero el átomo golpeado es desplazado de su lugar original, luego se convierte en ion pesado con energía, la cual va perdiendo por ionización y excitación al atravesar el material, pudiendo finalmente producir otros desplazamientos atómicos. Todos estos procesos dañan el material. Si se tratara de una captura radiativa, por ejemplo, el núcleo golpeado emite un rayo gamma, el cual interacciona con el material según ya hemos visto. Otras reacciones nucleares liberan radiaciones energéticas que producen sus efectos correspondientes.
![]()