V. EFECTOS INMEDIATOS DE UNA EXPOSICIÓN A LA RADIACIÓN
P
ARA
poder explicar lo que ocurre en el organismo como consecuencia de la exposición a la radiación, es necesario entender que lo observado es la consecuencia de un conjunto de efectos en el nivel celular. Estos efectos y la manera como se manifiestan, dependen de factores inherentes a la radiación y a características del individuo o del tejido irradiado.Los principales factores que determinan el efecto biológico de una exposición son el tipo de radiación y la dosis absorbida. Sin embargo, la velocidad con que se recibe esta dosis y el número de veces que el individuo se expone a la radiación, son factores que pueden modificar los efectos producidos. No tendrá los mismos efectos la administración de una dosis única, que la misma dosis distribuida en múltiples exposiciones. En lo que se refiere al individuo, será su edad, su estado general de salud, el tamaño de la zona expuesta, así como el tipo de tejidos irradiados lo que determine la gravedad de los efectos. Es importante comprender que los efectos de una dosis serán muy diferentes si es todo el cuerpo el irradiado o si solamente parte de él resulta expuesto. Por ejemplo, las consecuencias de 400 rads.2
recibidos en el cuerpo entero no serán las mismas que cuando 400 rads sean absorbidos solamente por una mano. En el primer caso, la vida del individuo estará en peligro, mientras que en la segunda, las consecuencias son las de una quemadura severa.
En exposiciones médicas y accidentales se alcanzan valores muy superiores (miles de veces) a los ambientales. En este capítulo se describe, en primer lugar, la interacción de la radiación con las estructuras celulares. A continuación se señala cuáles son los principales efectos locales causados por una sobrexposición en los tejidos u órganos que pueden ser vitales para el individuo irradiado. Posteriormente nos referimos a las consecuencias globales para el organismo y analizamos el caso particular de una irradiación terapéutica.
Cuando una partícula cargada que proviene de la radiación, atraviesa el medio celular es posible que su campo eléctrico consiga arrancarle electrones a las moléculas que constituyen la membrana, el citoplasma o el núcleo celular. El proceso se llama ionización, pues las moléculas que antes eran eléctricamente neutras, se transforman en iones (partículas cargadas) debido a la pérdida de un electrón. La radiación capaz de producir ionización se conoce como radiación ionizante y todos los tipos de radiación considerados en este libro (partículas alfa, beta, rayos gamma y neutrones) son de este tipo.
Una molécula ionizada tiene propiedades que pueden ser muy diferentes a aquellas de la molécula neutra. Por esto, una sola ionización puede significar que las funciones originalmente realizadas por la molécula ya no se podrán cumplir.
El efecto señalado anteriormente se considera directo, pues la molécula que sufre el daño es aquella que fue originalmente ionizada. Existen, además, efectos indirectos donde la molécula ya ionizada, puede resultar tóxica y afectar a otras moléculas o células que no fueron ionizadas directamente.
Como la ionización es un proceso que ocurre al azar, cualquier molécula puede resultar modificada al irradiarse la célula. Si la molécula ionizada es parte de la membrana celular es posible que se produzca una rotura que cause la muerte de la célula. En general, esta célula será reemplazada por otra. Si la molécula ionizada es parte de alguna organela citoplasmática, ésta puede llegar a destruirse y sus funciones serán asumidas por alguna otra estructura similar. Si la molécula dañada es el
ADN
del núcleo celular, parte de la información almacenada en los genes puede perderse o modificarse y dar lugar a que surjan mutaciones (capítulos IV y VI). Este daño se hará manifiesto durante la siguiente mitosis, cuando la célula intente reproducirse. Es posible que la mitosis no pueda realizarse y en este caso la célula morirá sin dejar descendencia. Pero también es posible que el gen dañado esté relacionado con la reproducción de esa célula y, en este caso, la célula y sus descendientes se dividan descontroladamente. Se piensa que esta pérdida de control en la etapa de división celular pueda ser una de las causas de la formación de un tumor.Cuando la estructura de los cromosomas es alterada por la radiación, el daño puede ser reparado inmediatamente con sustancias celulares que tienen esta función específica (enzimas de reparación). Si no hay reparación, o si ésta no es capaz de reintegrar la organización original del cromosoma, se producen rompimientos y rearreglos estructurales que se pueden observar al microscopio.
Los efectos de la radiación en diferentes tejidos dependen en gran medida de la velocidad de división celular durante y después de la irradiación. Existe una gran variación en el tiempo de vida para las diferentes células; por ejemplo, hay células que viven pocos días, como las formadoras de glóbulos rojos en la médula ósea, o las que recubren las paredes del intestino y la piel, mientras que otras células, como las nerviosas, pueden acompañar al individuo toda su vida.
Debido a la complejidad del proceso de replicación celular y a la necesidad de precisión al transmitir el código genético, una célula es más sensible a los efectos de la radiación durante la mitosis que en otras etapas de su ciclo celular. A continuación se discuten los efectos específicos de la radiación en tejidos con diferente radiosensibilidad.
La piel fue el primer tejido que se estudió al analizar las alteraciones producidas por la radiación. Dosis cercanas a los 100 rads producen reacciones de eritema (enrojecimiento de la piel) transitorio, que desaparecen al cabo de una semana, y que pueden dejar pigmentación transitoria en la zona irradiada. Cuando la dosis es mayor, varios cientos de rads, las células de la epidermis se destruyen y se forma una zona denudada, en la cual aparecen lesiones semejantes a una quemadura. Dosis de miles de rads producen necrosis (muerte del tejido) que puede curarse si el área afectada es pequeña, ya que es posible la migración de células vecinas a la zona dañada. Si el area irradiada es amplia, la herida necrótica no cicatrizará y solamente un injerto de piel repondrá la parte dañada.
La médula ósea es un tejido ubicado en el interior de los huesos y se encarga de producir las células sanguíneas. Estas son los glóbulos rojos y los glóbulos blancos. Los rojos están encargados de transportar al oxígeno desde los pulmones hasta cada una de las células del organismo. Los blancos protegen al individuo de las infecciones y participan en la defensa contra cualquier agresión, incluyendo los tumores malignos. En la sangre también existen corpúsculos denominados plaquetas, de gran importancia en los procesos de coagulación sanguínea.
Todos estos componentes sanguíneos tienen una vida limitada y son formados continuamente en la médula ósea por células progenitoras. Son estas células las más sensibles a la radiación. Cuando ocurre una exposición seria (superior a 100 rads), parte de las células circulantes resultan dañadas y el número de glóbulos blancos disminuye de inmediato. Éste es uno de los primeros síntomas que aparecen cuando hay una exposición muy por encima de los valores ambientales. Las células progenitoras pueden resultar dañadas por la exposición y, entonces, bajará la producción de nuevos glóbulos rojos y blancos, lo que será evidente algunas semanas después de la irradiación. Una baja en el número de plaquetas impide la coagulación sanguínea y en estas condiciones cualquier hemorragia podría resultar fatal. La escasez de células sanguíneas puede provocar la muerte del individuo. Se ha advertido que después de 60 días, con dosis entre 300 y 600 rads, se puede producir la muerte de un ser humano.
![]()
Cambio en la cuenta sanguínea de ratas irradiadas con 500 rads al cuerpo entero. Los valores se muestran en relación con los anteriores a la irradiación. Se observa una tendencia a la recuperación.
Cuando se observa el daño agudo causado por radiación en sangre periférica, manifiestado por alteraciones en la cuenta sanguínea, se debe aislar a la persona irradiada para evitar infecciones, en caso necesario transfundir plaquetas y, para casos severos, el único tratamiento posible será el transplante de médula ósea.
Posibles consecuencias tardías de la exposición a radiación son la destrucción del tejido medular (aplasia medular) y la leucemia (tipo de cáncer desarrollado en las células precursoras). Estos efectos se discuten ampliamente en el capítulo VI.
La pared interna del intestino está recubierta de células que se renuevan continuamente. Como respuesta inmediata a la irradiación se reduce el número de estas células y se deteriora el proceso de absorción que normalmente ocurre en él. Si el daño es limitado (menos de 100 rads) es posible que después de leves trastornos intestinales (náusea y diarrea) el organismo repare el daño y regrese a la normalidad. Esto no sucede si la dosis es superior a 700 rads. En este caso se producen ulceraciones en la pared interior, con riesgo de infección, pudiendo presentarse perforación intestinal y severas hemorragias. El tratamiento en estos casos consiste pnncipalmente en el equilibrio hidroelectrolítico y de proteínas, tratando de controlar las posibles infecciones. En las situaciones de mayor gravedad es indispensable la cirugía para remover los tejidos dañados. Este procedimiento resulta muy peligroso por la limitada capacidad de coagulación causada por la destrucción de las plaquetas y la reducida capacidad de defensa debida a la falta de glóbulos blancos, así como por el estado anémico en que seguramente se encuentrará el paciente. Estas complicaciones causan la muerte por irradiación a los pocos días, cuando la dosis sobrepasa los 700 rads.
Como efecto tardío de una irradiación se puede producir la fibrosis intestinal, que es la sustitución de las células precursoras por tejido fibroso, disminuyendo así la elasticidad y reduciendo la luz del intestino (esto es, el diámetro interno), lo que en ocasiones causa la oclusión intestinal.
El pulmón es el órgano intratorácico más sensible a la radiación. Después de una irradiación del pulmón con dosis cercanas a 2 000 rads, se produce el adelgazamiento y pérdida de la permeabilidad de la pared alveolar debido a la muerte de células alveolares, y aparece una secreción que favorece el desarrollo de infecciones pulmonares. En estos casos, el tratamiento consiste en ayudar a desalojar las secreciones, evitar el desarrollo de infecciones y propiciar la recuperación de los tejidos dañados. Todo esto se logra con el empleo de medicamentos adecuados y por medio del suministro de aire u oxígeno a presión al pulmón. Como efectos tardíos, 3 ó 4 meses después de la sobreexposición, se puede desarrollar una neumonitis caracterizada por alteraciones en los tejidos, colapso del equilibrio osmótico en los capilares, expansión irregular de las paredes del pulmón y paso de sangre al alveolo. Cuando se sobrevive la fase de la neumonitis, por lo general se presenta una fibrosis pulmonar que puede conducir a la falla respiratoria y ocasionalmente a la muerte.
La médula espinal es el conjunto de nervios ubicado en el interior de la columna vertebral que conecta al cerebro con el resto del cuerpo. El tejido nervioso de la médula espinal consta de células nerviosas y células de sostén. Un primer efecto de la irradiación de la médula con dosis mayores de 500 rads es la pérdida de la mielina que cubre las prolongaciones de las células nerviosas, lo que causa a las pocas semanas de la irradiación pérdida de insensibilidad y adormecimiento de las extremidades. Si la médula recibe dosis cercanas a 2 000 rads, se produce la parálisis, un daño irreversible.
Después de esta revisión de los efectos en órganos aislados, vamos a referirnos a las consecuencias de exposiciones en que todo el cuerpo resulte irradiado. A las pocas horas de ocurrida una exposición excesiva a la radiación, el individuo afectado puede presentar dolor de cabeza, náuseas, falta de apetito, vómito, diarrea, pereza, disminución en la cuenta sanguínea y mala coagulación. Posteriormente puede sobrevenir la pérdida del pelo. Estas alteraciones son reversibles si la dosis es menor de 100 rads. Si la dosis es mayor, la severidad de estas alteraciones aumenta y la recuperación del individuo se dificulta. Con una sola dosis de 400 a 500 rads el 50% de los individuos expuestos muere por alteraciones en la sangre. La probabilidad de que sobrevivan dependerá de la efectividad con que se les administre el tratamiento adecuado.
Si se incrementa la dosis más allá de los 700 rads, disminuyen las esperanzas de sobrevivir y cambia el mecanismo de muerte. Así, cuando la dosis es de 1 000 rads se puede producir la perforación del intestino en uno o varios sitios, lo que hace que el contenido intestinal pase a la cavidad del abdomen llamada peritoneal, produciéndose una infección e inflamación conocida como peritonitis, que es sumamente grave. En estas condiciones es fácil que la infección pase a la sangre y cause la llamada septicemia, que todavía en la actualidad es un cuadro extraordinariamente grave que conduce a la muerte de un gran número de enfermos. Cuando la dosis alcanza los 5 000 rads hay shock nervioso, edema y hemorragia en el sistema nervioso central y la muerte viene en unas cuantas horas.
![]()
Secuencia temporal de los principales efectos biológicos inmediatos en un ser humano, causados por una irradiación aguda y de cuerpo entero. En general, las exposiciones accidentales irradian todo el cuerpo del individuo y los efectos resultantes son los arriba mencionados. Con dosis superiores a unos 100 rads se presentan los primeros síntomas y se requiere de un seguimiento médico, mientras que dosis por encima de los 200 rads hacen indispensable la hospitalización. La recuperación será más probable mientras mayor sea la posibilidad de recibir los tratamientos adecuados, tales como transfusiones, conservación del equilibrio hidroelectrolítico, protección contra infecciones y en casos extremos, transplante de médula ósea.
EFECTOS DURANTE IRRADIACIONES MÉDICAS
Las exposiciones médicas durante la radioterapia son controladas, pues la zona y el tiempo de irradiación han sido cuidadosamente planeados para minimizar los efectos negativos para el paciente. Sin embargo, aún no existe un método para irradiar solamente el tejido canceroso por lo que, en todo tratamiento, una parte de los órganos sanos del paciente recibirá una dosis alta de radiación. Los efectos que se pueden presentar en el nivel sistémico son: falta de apetito, náuseas, vómito, diarrea, sensación de malestar, dolor de cabeza, cansancio, somnolencia y disminución de la cuenta de glóbulos rojos y blancos. Habitualmente estos transtornos son transitorios y bien tolerados por los pacientes.
Durante un tratamiento de radioterapia, puede producirse enrojecimiento de la zona irradiada, comezón, pigmentación de la piel o formación de una capa blanco-amarillenta en la mucosa y formación de vejiguillas en la piel. Estas pueden romperse y dejar salir un poco de líquido, con lo cual se origina una secreción constante, en ocasiones con sangre. Hay caída del pelo localizada en la zona irradiada.
Con la radioterapia moderna estas reacciones son ligeras y se ha evitado el daño severo de necrosis en los tejidos. Habitualmente no se requiere un tratamiento especial para estas reacciones y basta con aplicar cremas con esteroides para aliviar los síntomas. En raras ocasiones hay que suspender el tratamiento para evitar un daño severo. Es necesario comentar que todos estos malestares se pueden justificar cuando el objetivo es salvar la vida de un paciente con cáncer que, sin estos tratamientos, estaría sentenciado a muerte.
![]()
![]()