IX. LA FUSIÓN CALIENTE: LOGROS Y DIFICULTADES
E
N NUESTRO
Sol las reacciones de fusión nuclear ocurren de manera sostenida, sin que sea preciso inyectarle energía del exterior. Que éstas sean reacciones autosostenidas, se debe a que el gas en el Sol se encuentra a muy altas presiones y temperaturas. Así, los núcleos en la estrella chocan con mucha frecuencia y gran velocidad, lo que les permite superar la barrera de repulsión eléctrica que los separa. Algo análogo ocurre en la vecindad de objetos cósmicos, como los pulsares y los cuasares, donde se producen campos electromagnéticos de gran intensidad.En un gas a alta temperatura, la velocidad promedio de las moléculas es grande. Por ejemplo, en el centro del Sol se tiene una temperatura de 20 millones de grados y la velocidad promedio de las moléculas es de 30 000 km/s, un décimo de la velocidad de la luz. Desde luego, hay algunas moléculas que son más rápidas que otras. Al aumentar la presión y comprimir al gas, acercamos más a las partículas, que ahora chocan con mayor frecuencia. Cuando el gas se halla a muy alta temperatura, los choques son muy violentos y pueden disociar las moléculas en átomos, o aun desprender de éstos a los electrones. Se produce, pues, materia ionizada en forma de gas. Este es el estado en que se encuentra el Sol, y se le conoce como plasma, el cuarto estado de la materia.
Para vencer la repulsión eléctrica en un gas formado por una mezcla de tritio y deuterio es necesaria una energía cinética mínima de alrededor de 100 000 eV. Ello implica una temperatura equivalente a mil millones de grados. Como antes dijimos, la temperatura es proporcional a la energía cinética promedio de las moléculas de un gas. Sin embargo, siempre hay moléculas más rápidas que el promedio correspondiente a una temperatura dada. Este hecho permite que a una temperatura considerablemente menor que esos 109 K pueda haber una actividad de fusión razonable y suficiente. Así, se ha encontrado que a unos 60 millones de grados la fusión nuclear puede autosostenerse.
El otro parámetro importante para mantener la fusión nuclear sostenida es la cercanía entre los núcleos, pues mientras más juntos se encuentren más probable es que se unan. Los físicos e ingenieros que intentan controlar el plasma usan el llamado parámetro de confinamiento, que es igual al producto de la densidad del gas por el tiempo que la densidad puede sostenerse. La condición mínima para la reacción de fusión autosostenida es que el parámetro de confinamiento sea mayor que 3 x 1014s/cm3 Si el valor es menor; se requiere inyectar energía al plasma, lo que se logra calentándolo. Si se agrega una energía E, se obtiene del plasma una energía qE, donde q es un cierto factor de ganancia. Cuando q sobrepasa el valor unidad, el reactor se comporta ya como un amplificador de energía.
![]()
Figura 7. El reactor Tokamac (de las palabras rusas toroid = toroide, kamera = cámara, magnit = imán y katushka = bobina) para controlar la fusión caliente.
El problema tecnológico que plantea la fusión caliente es, pues, formidable: se debe confinar un plasma muy caliente durante un cierto tiempo. Debemos producirlo, calentarlo y todavía confinarlo. Para ello se requieren máquinas enormes, como el Tokamac, que se muestra en la figura 7 y que semeja una inmensa dona. En este aparato, el plasma se confina por la acción de campos magnéticos muy intensos y se le calienta por diversos medios, según su diseño.
TABLA 3. Los grandes proyectos de la física de plasmas.
Reactor Lugar País Inicio
TFTR Princeton EUA 1982 JET Oxford CEE 1983 JT-60 Tokio Japón 1986 MFTF Stanford EUA 1986 TORE-SUPRA Francia ? T-15 CEI ?
Hoy existen en el mundo sólo seis grandes proyectos destinados a producir la fusión controlada. Cinco son del tipo Tokamac y, como se ve en la Tabla 3, sólo los países más ricos son capaces de emprender acciones tan ambiciosas. En México, como en otros países de menor poderío económico, hay proyectos pequeños. En nuestro país estudian el problema grupos de científicos que trabajan en el Instituto Nacional de Investigaciones Nucleares y en la Universidad Nacional Autónoma de México.
El problema planteado por la fusión caliente es de gran magnitud. Sólo tres reactores de prueba operan hoy y sus valores del parámetro de confinamiento no están muy lejos de 3x 1014s/cm3, la condición que antes mencionamos para que la reacción se sostenga por sí misma. También el valor de q es cercano a uno, es decir; los reactores producen ya casi tanta energía como la que consumen. Este valor de q, sin embargo, no es suficiente para la operación comercial rentable, para la cual se requiere más bien un valor cercano a 20. Ya se proyecta una nueva generación de reactores, que podrán alcanzar esta meta en la primera o segunda décadas del siglo
XXI
.Entre las técnicas del siglo
XXI
, alternas a los reactores Tokamac, se halla la fusión inducida por láser. En ella, una mezcla de tritio y deuterio se calienta al concentrar varios haces de luz láser sobre una pelotita, de un milímetro de diámetro, que contiene el combustible. La luz ultravioleta, que se obtiene después de pasar la radiación láser infrarroja a través de un cristal perfecto que triplica la frecuencia de la luz incidente, fuerza a los electrones a oscilar y éstos calientan el plasma cuando chocan con sus iones. Al recibir tanta energía, el plasma en la periferia de la pelotita explota y, a causa de la tercera ley de Newton, ejerce una gran fuerza sobre el plasma en el interior de la bolita. Ésta se comprime mucho en consecuencia y las reacciones termonucleares pueden llevarse a cabo.![]()