VI. CAMPO ELÉCTRICO Y CAMPO MAGNÉTICO
A
DEMÁS
de sus notables descubrimientos experimentales Faraday hizo una contribución teórica que ha tenido una gran influencia en el desarrollo de la física hasta la actualidad: el concepto de línea de fuerza y asociado a éste, el de campo.Oersted había escrito que el efecto magnético de una corriente eléctrica que circula por un alambre conductor se esparce en el espacio fuera del alambre. De esta forma la aguja de una brújula lo podrá sentir y girar debido a la fuerza que experimenta.
Por otro lado, ya desde tiempos de Gilbert se habían hecho experimentos como el mencionado en el capítulo IV, el de una barra magnética con limaduras de hierro, donde se puede apreciar que las limaduras se orientan a lo largo de ciertas líneas.
Asimismo, desde la época de Newton se trató de encontrar el mecanismo por medio del cual dos partículas separadas cierta distancia experimentan una fuerza, por ejemplo, la de atracción gravitacional. Entre los científicos de esa época y hasta tiempos de Faraday se estableció la idea de que existía la llamada acción a distancia. Esto significa que las dos partículas experimentan una interacción instantánea. Así, por ejemplo, si una de las partículas se mueve y cambia la distancia entre ellas, la fuerza cambia instantáneamente al nuevo valor dado en términos de la nueva distancia entre ellas.
Antes de Faraday la idea de las líneas de fuerza se había tratado como un artificio matemático. Estas líneas de fuerza ya se habían definido de la siguiente forma: supongamos que hay una fuerza entre dos tipos de partículas, por ejemplo, eléctricas. Sabemos que si son de cargas iguales se repelen, mientras que si sus cargas son opuestas se atraen. Consideremos una partícula eléctrica positiva (Figura 8(a)), que llamaremos 1. Tomemos ahora otra partícula, la 2, también positiva, pero de carga mucho menor que la 1. A esta partícula 2 la llamaremos de prueba, pues con ella veremos qué pasa en el espacio alrededor de la partícula 1. La fuerza entre ellas se muestra en la figura. Ahora dejemos que la partícula de prueba se mueva un poco. Debido a que es repelida por la 1 se alejará y llegará a una nueva posición que se muestra en la figura 8(b). Si se vuelve a dejar que la partícula de prueba se mueva un poco llegará a otra posición, y así sucesivamente. La trayectoria que sigue la partícula de prueba al moverse en la forma descrita es una línea de fuerza. Nos damos cuenta de que la fuerza que experimenta la partícula de prueba es siempre tangente a la línea de fuerza. Ahora podemos repetir la experiencia colocando la partícula de prueba en otro lugar y así formar la línea de fuerza correspondiente. De esta manera podemos llenar todo el espacio que rodea a la partícula 1 de líneas de fuerza, y nos percatamos de que todas ellas salen de la partícula 1.
Si la partícula 1 fuera de carga negativa, las líneas de fuerza tendrían sentido opuesto a las anteriores, pues la partícula 1 atraería a la 2.
De esta forma se pueden encontrar las líneas de fuerza de cualquier conjunto de cargas eléctricas. En general éstas son líneas curvas que empiezan en cargas positivas y terminan en cargas negativas.
![]()
Figura 8. Forma en que se define la línea de fuerza del campo eléctrico.
En cada caso la fuerza que experimentaría una partícula de prueba de carga positiva que se colocara en cualquier punto del espacio tendría una dirección que sería tangente a la línea de fuerza en ese punto.
Podemos por tanto afirmar que para cualquier distribución de carga la(s) partícula(s) crea(n) una situación en el espacio a su alrededor tal, que si se coloca una partícula de prueba en cualquier punto, la fuerza que experimenta la partícula de prueba es tangente a la línea de fuerza. Se dice que cualquier distribución de carga eléctrica crea a su alrededor una situación que se llama campo eléctrico.
De manera completamente análoga se pueden definir las líneas de fuerza magnéticas. Al colocar una limadura de hierro ésta se magnetiza y se orienta en una dirección tangente a la línea de fuerza. Las limaduras de hierro desempeñan el papel de sondas de prueba para investigar qué situación magnética se crea alrededor de los agentes que crean el efecto magnético. En el capítulo anterior hablamos del efecto magnético que se produce en el espacio. Este efecto es el campo magnético.
Al cambiar la disposición de las cargas eléctricas, imanes o corrientes eléctricas, es claro que las líneas de fuerza que producen en el espacio a su alrededor también cambian. El efecto que se produce en el espacio constituye un campo. Así tenemos tanto un campo eléctrico como uno magnético. Por tanto, un campo es una situación que un conjunto de cargas eléctricas o imanes y corrientes eléctricas producen en el espacio que los rodea.
Fue Faraday quien proporcionó una realidad física a la idea de campo, y basándose en ello se dio cuenta de que si se cambia la posición física de cualquier partícula eléctrica en una distribución, entonces el campo eléctrico que rodea a ésta también deberá cambiar y por tanto, al colocar una partícula de prueba en cualquier punto, la fuerza que experimenta cambiará. Sin embargo, a diferencia de la acción a distancia, estos cambios tardan cierto intervalo de tiempo en ocurrir, no son instantáneos. Otro ejemplo es cuando una corriente eléctrica que circula por un alambre cambia abruptamente. Faraday se preguntó si el cambio en el campo magnético producido ocurría instantáneamente o si tardaba en ocurrir, pero no pudo medir estos intervalos de tiempo ya que en su época no se disponía del instrumental adecuado. (Incluso hizo varios intentos infructuosos por diseñar un instrumento que le sirviera a este propósito al final de su vida.) Sin embargo, no tuvo la menor duda de que en efecto transcurría un intervalo finito de tiempo en el que se propagaba el cambio. Así, Faraday argumentó que la idea de acción a distancia no podía ser correcta.
Hemos de mencionar que no fue sino hasta el año de 1887 cuando se midió en un laboratorio por primera vez, y se comprobó que este tipo de propagación ocurre en un tiempo finito. El experimento fue hecho por Heinrich Hertz y lo describiremos más adelante.
Faraday dio otro argumento para rechazar la idea de acción a distancia. La fuerza entre dos partículas eléctricamente cargadas no solamente depende de la distancia entre ellas sino también de lo que haya entre ellas. Si las partículas están en el vacío, la fuerza tendrá cierto valor, pero si hay alguna sustancia entre ellas el valor de la fuerza cambiará. Faraday realizó varios experimentos para confirmar sus afirmaciones. Escribió que el medio que se encuentre entre las partículas causa una diferencia en la transmisión de la acción eléctrica, lo que ocasiona que no pueda haber acción a distancia. Por lo tanto, la acción entre las partículas se debe transmitir, punto a punto, a través del medio circundante.
Fue en 1837 que Faraday propuso la idea de que la línea de fuerza tenía realidad física. Con ello demostró tener una gran intuición física para entender los fenómenos electromagnéticos. Hay que mencionar que debido a que no tenía preparación matemática adecuada, por no haber asistido a una escuela de enseñanza superior, Faraday no pudo desarrollar la teoría matemática del campo electromagnético, hecho que tuvo que esperar hasta Maxwell. Sin embargo, tuvo el genio extraordinario para describir esta idea de manera gráfica.
![]()