INTRODUCCIÓN
Uno de los temas de mayor interés para los seres humanos sin duda, es saber cómo funcionan las células. Como unidades de los seres vivos que son, su conocimiento resulta esencial para entender cómo trabajan los tejidos, los órganos y los sistemas. La agregación de células les confiere propiedades adicionales, que no modifican la mayoría de sus propiedades originales, pues sus funciones básicas siguen siendo las mismas. Un organismo multicelular, no importa lo complejo que sea, continúa basando su funcionamiento en el de cada una de sus células, agregando funciones a las ya existentes en ellas.
Los estudios sobre el comportamiento celular se iniciaron gracias a la acción de varias actividades paralelas, que poco a poco han ido convergiendo en un solo camino que tiende a integrar todos los conocimientos al respecto.
A partir del descubrimiento del microscopio por Van Leeuwenhoek, se inició el estudio de las funciones celulares que podían ser observadas con este instrumento, la división de las células por ejemplo. El descubrimiento del microscopio abrió la posibilidad de observar objetos muy pequeños y tuvo a la vez el mérito enorme de haber estimulado la curiosidad de los humanos por conocer más sobre las propiedades y características de tejidos y células.
De manera tanto independiente, a partir de los primeros años del siglo pasado, comenzó el estudio de la composición química de los organismos vivos. Con cierta rapidez, se llegó a definir un enorme número de compuestos de todos tipos y complejidades que se podían aislar de los organismos vivos; se generó así una vasta área del conocimiento humano, la llamada química orgánica.
Uno de los organismos que, desde antes del principio de los siglos que nuestro calendario cuenta, atrajo la atención de los humanos, a causa de su utilidad en la fabricación del pan y el vino fue la levadura. Pero sólo a principios del siglo
XIX
se iniciaron los estudios encaminados a conocer su funcionamiento, en principio dentro del marco de numerosas consideraciones religiosas y filosóficas. Schwann, científico alemán, definió que la levadura era un organismo vivo, responsable de la fermentación, e inició violenta polémica en contra de las críticas de otro científico, Liebig, quien no sólo se opuso a las ideas de Schwann sino que hizo cruel burla de ellas. Muchos años después, Pasteur realizó los interesantes experimentos que confirmaron las ideas de Schwann y que fueron, en cierta forma, los precursores de la actual biotecnología. Gracias a ellas se demostró que los problemas de la mala calidad de la cerveza francesa frente a la alemana provenían precisamente de la presencia de bacterias en los inóculos de levadura que se utilizaban para la producción de la bebida, y surgió la posibilidad de resolver el problema. La levadura es capaz de realizar la siguiente transformación:
Glucosa ®2C02 + 2 moléculas de alcohol etílico El interés por las levaduras se debe a que el C02 (bióxido de carbono) es el que produce las burbujas en la masa de harina, que al hornearla, le dan suavidad al pan, ya que el alcohol es el principio activo de cientos y quizá miles de bebidas espirituosas en todo el mundo, además de una sustancia de gran importancia industrial.
Hacia finales del siglo pasado, Bñchner describió la capacidad de las células rotas de levadura, que podrían ser consideradas muertas, de fermentar el azúcar. Este descubrimiento abrió la puerta para que muchos otros científicos se lanzaran al estudio de tal transformación. Desde de un principio se puso de manifiesto la enorme dificultad que implicaba aclarar la naturaleza del proceso. Se necesitaron muchos años de trabajo y la labor de numerosos y brillantes investigadores para caracterizar el gran número de compuestos que intervenían. Quedó claro que había sustancias complejas, a las que se dio el nombre de enzimas (del griego zymos, levadura) que eran responsables de producir las transformaciones de unos intermediarios en otros. Se fueron encontrando muchas otras sustancias que intervenían en el proceso y luego se descubrió que en los músculos de los organismos vivos se daban transformaciones semejantes. Más tarde se vio que el mismo proceso, como tal, o con algunas variaciones, también lo realizaban miles de organismos y prácticamente todos los tejidos vivos conocidos. Hacia los primeros años de este siglo, a partir de esos descubrimientos, nació la bioquímica.
A continuación se desarrollaron también los estudios sobre las transformaciones de otras sustancias, como las grasas y las proteínas. El trabajo de decenas de años de miles de investigadores de todo el mundo ha llevado al estado actual de conocimiento que tenemos sobre el metabolismo, esa enorme y complicada serie de transformaciones que experimentan constantemente las sustancias que ingerimos o que producimos en nuestro organismo.
Al mismo tiempo, y con el desarrollo de mejores microscopios, se avanzó en la descripción de la estructura de los microorganismos, los tejidos animales y vegetales y su componente unitario, la célula. Aunque en un principio fue un proceso difícil y estuvo combinado con gran cantidad de imaginación y especulación, el conocimiento del interior de la célula aportó hechos reales y teorías; con gran lentitud se fue descubriendo la imagen de los componentes, pero sólo recientemente se le asignó alguna función a cada uno. Uno de los grandes avances modernos fue el invento del microscopio electrónico, que aclaró conceptos, amplió conocimientos, y cada día, aun en la época actual, nos ofrece nueva información sobre la fina estructura de nuestras células.
A finales de los cuarenta se inició el camino para integrar los conocimientos sobre las formas o estructuras de las células y sus funciones. Por estas fechas se logró aislar los organelos celulares y se inició el difícil trabajo de aclarar sus funciones. Fue a partir de entonces que se inició un trabajo más integrado, para conocer y relacionar las funciones y las estructuras; lo cual dio pie a que en la época actual, la adquisición de nuevos conocimientos gire alrededor de un esquema general que reúne los conocimientos sobre la composición y el funcionamiento de las moléculas, las estructuras celulares, las células mismas, los tejidos, los órganos y los individuos.
Las características estructurales de los componentes celulares se pueden estudiar en las células íntegras. También, en ocasiones, es posible inferir conceptos fisiológicos de las imágenes que se observan, como sucede en el curso de la división celular, de donde se ha obtenido mucha información sobre los cromosomas y su división, su papel en la transmisión de las características hereditarias de unas células a otras, y otras propiedades de las células durante su división.
Por el contrario, en el caso de algunos organelos, es difícil obtener información sólo con observar diferentes estados de la célula. Para conocerlos ha sido necesario obtenerlos en forma más o menos pura, a partir de homogeneizados celulares hechos con ciertas precauciones. El caso del fraccionamiento de las células hepáticas nos da idea de lo sencillo que resulta obtener algunos de sus componentes. En la figura 1 se presenta un esquema del sistema que se emplea para fraccionar por centrifugación a velocidades variables los elementos de las células.
![]()
Figura 1. Sistema general para obtener organelos celulares. A partir de un homogeneizado de células rotas, por centrifugado a diferentes velocidades y tiempos, se obtienen los distintos organelos.
Para hacer un homogeneizado, primero se cortan con unas tijeras fragmentos pequeños de tejido. Se utiliza un medio isotónico, es decir, que contenga una concentración de sustancias semejantes a la de las células y organelos, para que los cambios de la presión osmótica conserven al máximo la estructura y la función de los componentes.
Luego se coloca el homogeneizado en un tubo de centrifugación y se pasa a través de una gasa, para eliminar los fragmentos de tejido que no se han roto y material fibroso. Si se somete a centrifugación a una velocidad que aumente 600 veces la fuerza de la gravedad, en unos diez minutos se van al fondo las células completas y los núcleos. También es factible utilizar procedimientos adicionales para purificar los núcleos, lavándolos de diferentes maneras y volviéndolos a separar por centrifugación.
El sobrenadante de esta primera centrifugación se puede someter luego a una fuerza centrífuga 15 000 veces mayor que la gravedad. Así se obtiene un paquete o pastilla de material en el fondo, que contiene en su mayor parte mitocondrias, lisosomas y otras partículas, como los centriolos. También hay procedimientos para purificar cada uno de estos componentes.
Si se toma el sobrenadante de esta segunda centrifugación y se somete ahora a una fuerza 105 000 veces mayor que la de la gravedad durante 60 minutos, se obtiene la llamada fracción microsomal (de microsomas), formada principalmente por vesículas del retículo endoplásmico, muchas de las cuales tienen adheridos los ribosomas. Por este procedimiento, utilizando sustancias que permiten liberar los ribosomas de las membranas, por ejemplo un detergente, y centrifugando de nuevo a la misma velocidad, se obtienen los ribosomas puros.
Finalmente, al sobrenadante que resulta de la centrifugación a 105 000 x g, se le llama fracción soluble o citosol, y representa solamente una dilución del material no particulado de la célula en el medio de homogeneización.
Las fracciones que se obtienen así se utilizan para muchos estudios que nos dan información sobre las funciones de cada organelo. Es claro que los métodos para romper y homogeneizar las células varían de unos tejidos o tipos celulares a otros, y el caso de las células hepáticas no es más que un ejemplo de uno de los métodos más sencillos que hay.
Si queremos acercarnos al conocimiento de las funciones celulares, no debemos olvidar el papel que desempeñaron los microorganismos en estas investigaciones; aunque mencionamos a la levadura, participaron muchos otros microbios, entre los que destaca el colibacilo o Escherichia coli, humilde bacteria que crece en el intestino de casi todos los humanos. De hecho, aquellos estudios que se iniciaron por simple curiosidad, permitieron saber que hay grandes variaciones en el comportamiento metabólico de los microbios y los hongos microscópicos. De los estudios básicos de los científicos surgieron productos de gran beneficio para la humanidad, como las sulfas o los antibióticos. Este trabajo de investigación llevó a desarrollar la biotecnología, el amplio campo donde se obtienen diversos productos de los seres vivos.
Otro capítulo importante, iniciado en los años cincuenta, fue la posibilidad de cultivar células de organismos superiores; posteriormente se desarrolló el conocimiento sobre sus funciones. Por ejemplo, no sólo se pudo llegar a cultivarlas, sino se demostró que una célula de un organismo es capaz de regenerarlo; también se encontró que cultivando células vegetales, en algunos casos se pueden reproducir de manera mucho más rápida que por la siembra, variedades de plantas que conservan sus características. Los cultivos celulares pueden ser invadidos por los virus, pero esto, que pudiera parecer una tragedia, ha servido para reproducir algunos de estos agentes patógenos y así elaborar algunas vacunas contra ellos.
Este libro busca acercar al lector al conocimiento de algunas de las funciones generales de las células, para que se asome al mundo maravilloso de las estructuras y el acomodo de funciones extraordinarias que tienen cabida en un espacio tan pequeño. Casi todos creemos que una neurona y una célula muscular se comportan de manera muy distinta; sin embargo, al revisar sus funciones fundamentales resulta que son muchas más las semejanzas que las diferencias, y que es posible establecer un patrón o sistema general de comportamiento, no sólo de las células, sino de sus componentes, la membrana, los organitos u organelos celulares, el núcleo, las mitocondrias, etc. Además, esto es válido no sólo en lo que se refiere a las funciones, que típicamente se describen a nivel fisiológico (como la reproducción, el movimiento u otras características) sino para la base de las funciones celulares que es en última instancia la gigantesca serie de transformaciones químicas, el gran número de interacciones de sus moléculas, en el intrincado mundo en el cual ya no es posible diferenciar entre la bioquímica, la biología molecular y la fisiología de las células. Todo el conocimiento se va integrando dentro del área que recibe el nombre de biología celular o fisiología celular.
Como consecuencia, se busca presentar una imagen integral de las funciones celulares, sin diferenciar entre las que se pueden apreciar de manera macroscópica, como la división celular, y aquellas que no podemos ver, como las transformaciones de la energía o el transporte de sustancias hacia el interior o el exterior de la célula, y que en términos generales han sido consideradas más bien del dominio de la bioquímica. En el mundo actual, y cada vez con mayor frecuencia, tienden a desaparecer las divisiones artificiales que en una época fueron más o menos claras, pero que más bien fueron reflejo de la ignorancia de los investigadores, y no una realidad biológica. Es fundamental que el lector asimile la idea de que no hay separación entre el movimiento de una célula que podemos ver en el microscopio, o incluso a simple vista, y los procesos moleculares que ocurren en él. Las células se mueven porque algunas de sus moléculas se acortan o alargan, resultado de interacciones y deslizamiento de sus componentes y la participación de otras, unas pequeñas y otras grandes, la mayor parte de ellas invisibles a nuestros ojos, pero todas relacionadas de tal forma que finalmente hacen posible el fenómeno macroscópico que podemos observar, la contracción de la fibra muscular.
Es importante también que el lector esté dispuesto a revisar otros libros que en esta misma serie tocan conocimientos o temas que aquí se verán de manera muy resumida. Al final se darán algunos títulos que servirán de consulta a quien esté interesado en ampliar ciertos conocimientos. Algunos de estos libros pertenecen a esta misma colección, La Ciencia desde México, donde los estudiantes encontrarán textos sencillos y amenos, que harán aumentar su interés por los temas que aquí presentamos. También haremos referencias a obras más complejas, las cuales llevarán al interesado por un camino que finalmente lo guiará hasta las fuentes primeras, los trabajos originales de los investigadores.
![]()