I. MÉTODOS DE ESTUDIO DEL SISTEMA NERVIOSO CENTRAL
A
PESAR DE QUE LA FASCINACIÓN
del ser humano por el cerebro data de hace miles de años, su conocimiento ha dependido, al menos en parte, de las herramientas con las que ha contado para desarrollar y amplificar sus sentidos. No se ha tratado únicamente de mejorar la comunicación hacia el exterior, con sus semejantes, sino también de expandir sus horizontes interiores. Y también a pesar de que la ciencia, mediante la observación y el análisis de la conducta del hombre y los animales, tanto en condiciones normales como ante alguna patología, ha ayudado y lo sigue haciendo para conocernos más, en la actualidad podemos complementar este análisis con nuevas técnicas, las cuales nos conducen ante interrogantes desde nuevos puntos de vista.El ser humano ha recorrido un largo camino para desarrollar esas técnicas, y aún le falta mucho más. Parte de este avance radica en la solución de los problemas que estas mismas técnicas plantean y en conocer sus limitaciones.
Los factores más importantes a considerar cuando se evalúa la utilidad, de una técnica son tres: la resolución temporal, la resolución espacial y el grado de invasividad (término que se refiere a la invasión del organismo: desde la simple inyección hasta la cirugía mayor). La resolución temporal se refiere a la capacidad para detectar fenómenos dinámicos que cambian en el tiempo: desde la milésima de segundo hasta las horas o los días. La resolución espacial se relaciona con la sensibilidad de la técnica para detectar dimensiones pequeñas, desde la milésima de milímetro (la micra =µmm) hasta los centímetros. Finalmente, el grado de invasividad nos indica la necesidad o no de inyectar alguna sustancia al organismo, practicar incisiones, hacer cortes o producir lesiones.
Conocer algunas de las técnicas disponibles en la actualidad para esta tarea, aunque sea de manera superficial, puede ayudar a valorar su utilidad y, no menos importante, saber sus límites. Por ejemplo, no podemos esperar que un electroencefalograma (
EEG
) nos informe sobre la actividad de una sola neurona, pues requeriría de electrodos muy finos, los cuales deben introducirse al cerebro. Veamos, pues, cómo se estudia en la actualidad al sistema nervioso, a nivel experimental, fundamentalmente en el laboratorio.
![]()
FIGURA
I.I
. Técnicas para el estudio de la función cerebral: resolución temporal y resolución espacial. Aquí se muestran los límites de definición en el tiempo (ordenadas: desde milésimas de segundo hasta días) y en el espacio (abscisas: el tamaño, desde milésimas de milímetro hasta decenas de centímetros) de varias técnicas usadas en neurobiología. También se ilustran, de acuerdo con una escala de color, el grado de invasividad (qué tanto hay que penetrar el tejido nervioso para poder estudiarlo) de cada una de ellas: desde el azul, que representa poca o ninguna invasividad, como es el caso del electroencefalograma (EEG
), procedimiento en el que sólo se colocan pequeños discos metálicos electrodos en la superficie del cuero cabelludo, hasta el rojo, cuyo mejor ejemplo lo constituyen las lesiones. Si se quieren analizar fenómenos muy rápidos, entonces las técnicas disponibles son las que regulan la actividad eléctrica, desde dendritas o axones (en las que se usa el registro de parche o el registro unicelular) hasta elEEG
. La mayoría de las técnicas de imagenología utilizadas en la clínica tienen una definición espacial bastante grande; es decir, apreciamos fenómenos relacionados con áreas cerebrales o con la corteza cerebral en todo su grosor. ElEEG
, laMEG
o laTEP
no nos permiten ver capas corticales, y mucho menos células.Microscopía electrónica:
M/E
;MEG
: magnetoencefalografía;PRE
: potenciales relacionados con eventos (también llamados potenciales sensoriales evocados);RMN
: resonancia magnética nuclear;TEP
: tomografía por emisión de positrones. Las unidades en ambas escalas son logarítmicas. (Véanse los detalles en el texto.)
La estructura microscópica de las células nerviosas puede estudiarse en rebanadas finas de tejido (grosores de entre 5 y 50 µmm) fijado previamente (es decir, tratado químicamente para que no se descomponga), fresco o congelado inmediatamente después de su extracción. Una vez que se tienen esos cortes finos, se tiñen con un colorante. La elección de éste depende de lo que se quiere analizar. En el método de Nissl, por ejemplo, se utilizan colorantes de anilina con afinidad por el ácido ribonucleico (
ARN
) del retículo endoplásmico rugoso, y permite ver el tamaño, forma y densidad de los cuerpos celulares. Colorantes de sales de plata (los llamados de impregnación argéntica) son útiles para teñir el cuerpo y las ramificaciones neuronales (dendritas y axón), visibles al microscopio de luz o electrónico. Estos métodos, conocidos como de Golgi (en honor a su descubridor, el anatomista italiano Camilo Golgi, a finales del siglo pasado), representaron un avance cualitativo de nuestro conocimiento acerca de la morfología delSNC
, y en particular, gracias a los estudios de Santiago Ramón y Cajal, en España. No todas las neuronas se tiñen con estas sales de plata, y sigue siendo un misterio por qué sólo algunas de estas células son afines al colorante.En la actualidad podemos insertar un microelectrodo (p. ejem., un tubo de vidrio estirado con calor, para obtener una fina punta de algunas milésimas de milímetro de diámetro) e inyectar colorantes especiales dentro de la célula. Aún más: podemos reunir uno de estos colorantes con un anticuerpo que sea específico para algún componente de una neurona en particular y así identificar células de diferentes familias.
Para obtener información sobre las conexiones entre neuronas se usan otras técnicas. Si seccionamos un axón (que es la prolongación que sale de la neurona y conduce el impulso nervioso), su porción distal (la más alejada del cuerpo neuronal) degenera. Este fenómeno se conoce como degeneración anterógrada (hacia adelante). Con el método de Marchi se tiñe la mielina (la envoltura axonal), y existen otras técnicas con las que se tiñen las terminales sinápticas. También podemos examinar los cambios causados por degeneración retrógrada, esto es, aquella que inicia en el sitio de lesión axonal y se dirige hacia el cuerpo neuronal.
Podemos aprovechar este "transporte axonal" (el flujo de moléculas a través del axón) para inyectar sustancias marcadoras o utilizar moléculas tomadas por la neurona para después ser transportadas. Tal es el caso de la enzima peroxidasa de raíz fuerte, o de aminoácidos radiactivos. Recientemente se han utilizado ciertas toxinas y virus que atraviesan la membrana neuronal como acarreadores de colorantes u otras sustancias (incluido el material genético para hacer que la neurona produzca determinada proteína o deje de hacerlo) que pueden ser visualizadas con el microscopio.
El análisis del comportamiento natural o aprendido, individual o social del ser humano y los animales comprende desde la sola observación hasta la cuantificación detallada, a partir de imágenes grabadas y desmenuzadas por computadora, de los componentes finos de cada movimiento. El empleo de métodos de condicionamiento clásico pavloviano o instrumental (el ejemplo clásico es el del perro que produce saliva al oír una campana después de que se le acostumbró a asociar ese sonido con la comida) agrega nuevas dimensiones al estudio de la conducta. Podemos investigar funciones simples, como caminar, percibir estímulos, emociones, u otras más complejas, como las cognoscitivas; aquí se pueden incluir la atención selectiva, los procesos relacionados con la memoria, el lenguaje, el aprendizaje, el razonamiento, etcétera.
El registro de la actividad eléctrica que se produce en el sistema nervioso provee de una visión funcional única. Es la técnica que permite examinar fenómenos cerebrales extremadamente breves, del orden de milésimas de segundo, que ocurren cuando una neurona se comunica con otra. El llamado impulso nervioso, la señal elemental y fundamental de la transferencia de información, se manifiesta a nivel eléctrico y por lo tanto, también magnético. Podemos registrar las señales eléctricas de neuronas únicas (o hasta de porciones diminutas de su membrana) con microelectrodos, o de conjuntos de neuronas, como en el caso del
EEG
, por medio de electrodos más grandes.1![]()
El enfoque moderno de la neuroquímica nos acerca a la dimensión molecular de la función nerviosa. Mediante la separación, el aislamiento y la detección de sustancias específicas, la neuroquímica ha permitido descifrar nuevos significados del lenguaje neuronal. Utilizando moléculas que imitan la acción de compuestos endógenos, o que bloquean sus efectos (los agonistas y antagonistas, respectivamente), se han identificado los integrantes del proceso de comunicación entre las células. Las nuevas técnicas de biología molecular han enriquecido nuestro conocimiento sobre los procesos más íntimos que participan en la función celular. (La descripción de estas técnicas escapa a los objetivos de esta obra, sin embargo, el lector puede consultar el libro indicado en la nota al pie de página.)
Existen otros métodos para visualizar el sistema nervioso en los que se utilizan el sonido, la luz, o el registro del flujo sanguíneo cerebral, o la distribución de marcadores radiactivos. Por medio de detectores de señales y programas de computadoras se pueden realizar "cortes" del cerebro, o de médula espinal de alta resolución espacial: con la resonancia magnética nuclear (
RMN
) es posible detectar masas de 2 a 3 mm de magnitud; la tomografía por emisión de positrones (TEP
) es otra técnica que permite estudiar el sistema nervioso desde un punto de vista dinámico, aunque su resolución espacial y temporal son limitadas.Al conjunto de estas técnicas, basadas en el análisis de imágenes, se le conoce como imagenología. Esta nueva disciplina se enriquece actualmente con la conjunción de varias técnicas al mismo tiempo: por ejemplo, la unión de la
RMN
con laEEG
, o con la magnetoencefalografía (MEG
).![]()