PRÓLOGO

MARCOS MOSHINSKY

El 7 de octubre de 1885 nació en Copenhague, Dinamarca, Niels Bohr, un hombre cuyo destino sería contribuir en forma fundamental a una revolución en la física y, a partir de ella, a la vida de la humanidad entera. La palabra revolución ha sido frecuentemente monopolizada por movimientos políticos de diferentes tipos. Pero es quizás la revolución científica la característica esencial de nuestro siglo y la que más ha alterado la vida del hombre. Por ello quisiera en las siguientes líneas analizar brevemente la vida y la obra de Niels Bohr en ocasión de su centenario.

La familia de Niels Bohr contaba con una larga tradición cultural. Su padre fue profesor de fisiología en la Universidad de Copenhague, lo cual permitió a sus hijos desarrollarse en un refinado ambiente intelectual.

Su país, Dinamarca, ofreció, desde antes de su nacimiento hasta la invasión nazi de 1940, un ambiente de paz y tranquilidad que propiciaba el estudio y en donde se percibían las influencias de sus vecinos: Inglaterra y Alemania. En la ciencia esas influencias se complementaban: la primera ponía énfasis en el método experimental y la filosofía pragmática, mientras que la segunda recalcaba más los aspectos formales y teóricos.

La educación profesional de Niels y su hermano Harald (que fue después un distinguido matemático) se realizó en la Universidad de Copenhague, bajo la influencia de todas las corrientes científicas de Europa, en aquella época el centro intelectual del mundo. Niels Bohr se doctoró en 1911 con un trabajo sobre la teoría electrónica de los metales.

¿Cuál era el panorama de la física que encontró Niels Bohr al iniciar su vida como investigador? La hipótesis de la constitución atómica de la materia data desde los tiempos de Demócrito, pero el paso de una concepción filosófica a la materialización científica ocurrió a principio del siglo XIX, con el uso de tal concepto en la química por Dalton. Con todo, a lo largo del siglo XIX la idea de que hubiera átomos asociados a diferentes elementos continuó siendo debatible, aunque a finales de dicho siglo, con el descubrimiento del electrón por J.J. Thompson, se empezó a ver que dichos átomos ya no eran los constituyentes últimos de la materia, sino que estaban a su vez formados por electrones y algún tipo de carga positiva que los compensara para garantizar la neutralidad eléctrica del átomo. Un brillante experimento de Rutherford en 1911 mostró que esa carga positiva debería de estar concentrada en un núcleo atómico cuya dimensión era de aproximadamente un cienmilésimo de la del átomo mismo, dando lugar a la concepción planetaria del átomo como núcleo rodeado de electrones.

Bohr se daba cuenta de la importancia de los descubrimientos realizados en Inglaterra y por ello decidió continuar sus estudios e investigaciones posdoctorales en ese país, primero en Cambridge con J.J. Thompson en 1911 pero luego con Rutherford en Manchester en 1932. Fue con este último: con quien inició una colaboración que duró toda su vida y que resultó inmensamente fructífera para la ciencia.

Consideró Bohr que el modelo de Rutherford para el átomo, aunque al parecer corroborado por los experimentos, no era estable desde el punto de vista de las leyes de la mecánica y la electrodinámica que se aceptaban en esa época. La teoría predecía que esos átomos debían sufrir un colapso en pequeñísimas fracciones de segundo, lo cual era patentemente absurdo. Para evitar ese colapso, Bohr recurrió a las ideas de cuantización que originalmente habían introducido Planck y Einstein en relación con la radiación y que él aplicó al movimiento de los electrones. Esas ideas impedían el colapso del átomo y además predecían, en una forma muy sencilla, el tipo de radiación que los átomos debían emitir y, en particular, el átomo de hidrógeno, predicciones ampliamente corroboradas por el experimento.

Bohr introdujo, pues, la primera formulación teórica que permitía entender la estabilidad de los átomos y más adelante mostrar que las propiedades químicas de los elementos, sistematizadas en la tabla periódica de Mendeleiev, estaba directamente ligada al número y la ordenación de los electrones en el átomo correspondiente.

Los descubrimientos anteriores por sí solos hubieran justificado el papel prominente de Bohr en la física, y de hecho fueron la base para que se le otorgara el premio Nobel en 1922, pero sólo marcaron el inicio de su brillante carrera científica. Bohr se daba cuenta que su explicación de la estabilidad del átomo se basaba en agregar a la mecánica y electrodinámica clásicas el "pegoste" de la cuantización, y que lo que se requería era una nueva mecánica en donde este "pegoste" formara parte de los axiomas fundamentales. Durante la década de los veintes pasaron por la puerta del Instituto de Física Teórica (que la Universidad de Copenhague creó para albergar a Bohr y sus colaboradores) los más brillantes físicos del mundo, la mayoría de ellos muy jóvenes, que bajo el estímulo de múltiples discusiones con Bohr elaboraron las bases de lo que hoy se conoce como la mecánica cuántica. No en balde la interpretación más aceptada de esta mecánica se conoce con el muy preciso nombre de la interpretación de Copenhague.

Tuvo pues Bohr un papel fundamental en la elaboración de las teorías requeridas para la comprensión de la estructura de la materia, base de la mayor parte de los adelantos tecnológicos que hemos visto surgir en electrónica y ramas conexas en la segunda mitad del siglo XX.

No se limitó Bohr sólo al estudio de la estructura del átomo normada por los electrones que rodean el núcleo. Desde el inicio de su contacto con Rutherford en 1912 se interesó también en el núcleo mismo y, después del descubrimiento del neutrón en 1932, en la estructura de este núcleo como un agregado de protones y neutrones. En 1936 Bohr propuso un modelo para los núcleos atómicos, conocido como modelo colectivo o de la gota de líquido, que resultó fundamental para comprender muchas de las propiedades de la estructura y de las reacciones nucleares. En particular el modelo sirvió para analizar el proceso de fisión del núcleo de uranio descubierto en 1939 por Hahn y Strassman y fue Bohr el que identificó al isótopo 235 del uranio como el que se fusionaba con neutrones lentos. Contribuyó pues, en forma básica, al inicio de lo que debería llamarse Era Nuclear, aunque se conoce más frecuentemente como Era Atómica.

La invasión nazi de Dinamarca en 1940 sorprendió a Bohr en su país y tuvo que soportarla hasta 1943. Informado en ese último año que la Gestapo pensaba apresarlo, escapó a Suecia y de allí a Inglaterra en un avión del servicio de inteligencia británico. Allí se enteró de los esfuerzos que se estaban desarrollando para liberar la energía nuclear y, desgraciadamente, crear armas nucleares, con base en los descubrimientos a los que él había contribuido en los años treinta. Durante los últimos años de la segunda Guerra Mundial, tanto en Inglaterra como en Estados Unidos, Bohr realizó enormes esfuerzos para tratar que al terminar el conflicto no se produjera una carrera armamentista nuclear. Sugirió una y otra vez que el conocimiento alcanzado en Estados Unidos y en Inglaterra se hiciera público como muestra de su deseo de cooperación internacional. Predijo que si tal cosa no ocurría, de todos modos otros países podrían recrear los pasos seguidos pero en un ambiente de competencia y conflicto en lugar de cooperación, como efectivamente sucedió. La ceguera de los políticos con respecto al problema puede medirse por el comentario de Churchill quien, después de una entrevista con Bohr, se preguntó molesto porqué sabía tanto ese hombre de un proyecto ultrasecreto. No se daba cuenta que Bohr no necesitaba oír de las ideas de los demás sobre el tema, ya que muchas de las más importantes habían surgido por primera vez en su propia mente.

En los últimos años de su vida Bohr, además de su lucha constante por la paz y la cooperación internacional, fue un extraordinario promotor científico. Su Instituto de Física Teórica, que hoy en día lleva su nombre, continuó siendo lugar de entrenamiento para físicos provenientes de todas las partes del mundo. Fue uno de los principales impulsores para la creación del Centro Europeo de Investigaciones Nucleares (CERN) en Ginebra y alojó en su Instituto la sección teórica del CERN hasta que ésta pudo trasladarse a sus instalaciones permanentes. En Dinamarca promovió la creación de instalaciones nucleares y de desarrollo científico que, con sus aportaciones, contribuyeron a que fuera considerado el ciudadano más eminente de su país.

No cabe duda que Niels Bohr ha dejado una marca indeleble en el saber científico y en el tortuoso camino que la humanidad sigue en la búsqueda de un mundo mejor. Quisiera concluir con la cita siguiente: "Lo que es tan maravillosamente atractivo de Bohr como científico es su rara mezcla de audacia y precaución. Pocas veces ha habido un investigador que tuviera una intuición tan profunda de los problemas ocultos combinada con un sentido crítico tan desarrollado. Su conocimiento de cada detalle no lo distrae del principio básico subyacente. Es sin lugar a duda uno de los más grandes descubridores científicos de nuestra época." Las palabras son de Albert Einstein.

ÍndiceAnteriorPrevioSiguiente