I. MATERIA, LUZ Y ANTIMATERIA
P
RESENTAREMOS
en este y los siguientes capítulos el Universo en la escala microscópica, estudiaremos las partículas más fundamentales de la materia y echaremos un vistazo al mundo cuántico, con sus extrañas leyes, donde los entes fundamentales son partículas y ondas a la vez.Lo que llamamos átomo en la actualidad no es, estrictamente hablando, el átomo de Demócrito. Ernest Rutherford demostró, en 1911, que el llamado átomo consta de un núcleo, alrededor del cual giran pequeñas partículas llamadas electrones.
Los electrones son partículas con una carga eléctrica negativa, mientras que el núcleo atómico posee una carga eléctrica positiva. Debido a que cargas eléctricas de signo contrario se atraen, el núcleo ejerce una fuerza de atracción en los electrones que se encuentran a su alrededor.
Para visualizar un átomo, podemos pensar en un sistema solar microscópico en el que el núcleo sería el Sol y los electrones los planetas. La diferencia es que el Sol mantiene unidos a los planetas por la fuerza gravitacional que ejerce sobre ellos, mientras que el núcleo atrae a los electrones por medio de la fuerza eléctrica.
Pero el núcleo atómico no es una partícula, sino que está formado, a su vez, de dos tipos de partículas: los protones y los neutrones (Figura 1). La existencia de los primeros fue establecida por el mismo Rutherford en 1919, mientras que los segundos fueron descubiertos, años más tarde, por J. Chadwick. En resumen, parecía que tres tipos de partículas eran los constituyentes fundamentales de la materia.
![]()
Figura 1. Esquema de un átomo de helio. Dos electrones "giran" alrededor de un núcleo compuesto de dos protones y dos neutrones.
Los protones y los electrones son partículas con cargas eléctricas exactamente de la misma magnitud pero de signos contrarios. Esta carga fundamental es de 1 .602 x 10-19 coulombs. 2
3
Los neutrones por otra parte, no poseen carga eléctrica. La carga de un núcleo atómico está determinada de manera exclusiva por el número de protones que lo constituyen y es, por lo tanto de signo positivo. Evidentemente, la carga de un núcleo es un múltiplo entero de la carga de un protón.
Para tener una idea de lo diminutas que son estas partículas, señalemos que la masa de un electrón es de unos 9. 109 X 10-28 gramos, mientras que un protón es 1 836 veces más masivo que un electrón pesa cerca de 1. 673 X 10-24 gramos y el neutrón es ligeramente más pesado que el protón 1.675 X 10-24 gramos. El cuerpo humano, por ejemplo, está hecho de 20 000 billones de billones (2 X 1028) de protones, otros tantos electrones y un número un poco mayor de neutrones.
En la naturaleza existen, en estado natural, 92 tipos de elementos químicos. Un elemento químico está determinado enteramente por el número de protones en el átomo que lo constituye. El núcleo del átomo de hidrógeno consta de un único protón, el del helio posee dos protones y dos neutrones, el del litio tres protones y cuatro neutrones, ...el carbón seis protones y seis neutrones... el hierro 26 protones y 30 neutrones... y así hasta el uranio, cuyo núcleo está formado por 92 protones y 146 neutrones. Además, los átomos de diversos elementos químicos suelen unirse entre sí para formar moléculas; por ejemplo, la molécula del agua consta de dos átomos de hidrógeno y uno de oxígeno. Los átomos se mantienen unidos en las moléculas gracias a las atracciones eléctricas y magnéticas.
Como veremos con más detalle en el próximo capítulo, los protones y neutrones se encuentran amarrados en el núcleo por las fuerzas nucleares. Para transmutar un elemento químico en otro es necesario cambiar el número de protones en el núcleo, lo cual es posible en principio, pero requiere de una enorme cantidad de energía, muchísimo mayor de la que soñaron los alquimistas. La razón es que las fuerzas nucleares son tan intensas, que no se puede despegar fácilmente un protón del núcleo.
En cambio, las fuerzas eléctricas son menos intensas, por lo que es factible despegar uno o varios electrones de un átomo. En condiciones normales en la Tierra, los átomos constan generalmente de un igual número de electrones que de protones y, por lo tanto, la carga neta de un átomo es cero. Pero puede suceder que algunos electrones se escapen de la atracción del núcleo, dejando así al átomo con una carga positiva neta; en tal caso se dice que el átomo se ha convertido en un ion. En los metales, los átomos se pueden acomodar de tal manera que sus electrones viajan de un átomo a otro; la corriente eléctrica, por ejemplo, se debe al flujo de electrones en un cable metálico.
En resumen, los ladrillos fundamentales con los que está hecha toda la materia que existe a nuestro alrededor son los electrones, los protones y los neutrones. Pero, además de la materia, existe la radiación es decir, la luz...
Ya en el siglo XVII, los físicos empezaron a preocuparse por la naturaleza de la luz. Isaac Newton pensaba que la luz estaba hecha de partículas, mientras que otros como Christian Huygens, sostenían que la luz es una onda que, al igual que una ola en el agua o el sonido en el aire, se propaga en algún misterioso medio al que llamaron éter.
La naturaleza de la luz quedó aparentemente elucidada a mediados del siglo XIX, cuando James Maxwell encontró las ecuaciones que describen la electricidad y el magnetismo, y demostró, a partir de esas ecuaciones, que la luz es una onda electromagnética. La consecuencia más lógica sería que si la luz es una onda, debería existir el éter para transportarla.
Quizás sería más apropiado decir que la luz presenta características propias de una onda incluso con esta aclaración, la realidad resultó más complicada. El primer problema era el éter mismo, esa extraña sustancia impalpable que sólo se manifiesta como transmisora de la luz. Los intentos por detectarlo, aunque fuese de manera indirecta, resultaron inútiles.4
![]()
Por otra parte, a fines del siglo XIX, ya se habían descubierto algunos fenómenos físicos que sencillamente no se podían explicar con base en una teoría ondulatoria de la luz. Max Planck demostró que la luz debía consistir de paquetes de energía, o cuantos y que la energía E de cada paquete es:
E= hv donde h es ahora llamada constante de Planck 5
y v es la frecuencia de la luz considerada 6
. Poco después, en un famoso trabajo publicado en 1905 por Albert Einstein demostró que el efecto fotoelétrico (el mismo que hoy en día permite construir los detectores que se usan, por ejemplo, para cerrar las puertas de los elevadores) sólo se puede explicar si la luz es una partícula. Tal partícula, el fotón, tiene la propiedad de no poseer masa sino energía pura, además de que siempre se mueve a la velocidad de la luz. Esta propiedad sólo puede entenderse en el marco de la teoría de la relatividad de Einstein, a la que volveremos más adelante. Por ahora señalemos que, de acuerdo con esta teoría, ninguna partícula puede moverse más rápidamente que la luz, y sólo puede moverse a esa velocidad si no posee masa, como es el caso de fotón.
Así pues, la luz es una onda y a la vez una partícula. Esta dualidad onda-partícula es una de las características más notorias del mundo cuántico y tendremos oportunidad de volver a ella. Por el momento recordemos que la longitud de una onda de luz que se define como la distancia entre dos crestas o dos valles (Figura 2 ) es inversamente proporcional a la frecuencia y, por lo tanto, a la energía del fotón asociado. A mayor energía del fotón, mayor frecuencia de vibración y menor longitud de la onda.
![]()
Figura 2. La longitud de onda es la distancia entre dos crestas, y es inversamente proporcional a la frecuencia (número de vibraciones por segundo).
Los fotones con más energía que se conocen son los fotones gamma, aquellos que constituyen los llamados rayos gamma cuyas longitudes de onda son menores que unos 10 -8 cm. Les siguen los rayos X, cuyas longitudes de onda se encuentran entre los 10- 8 y los 10-6; cm; y luego los rayos ultravioleta, entre 10- 6 y 10-5, cm. Nuestros ojos sólo perciben la luz cuya longitud de onda se encuentra entre las 380 millonésimas de milímetro (luz violeta) y las 760 millonésimas de milímetro (luz roja); entre esas dos longitudes de onda se hallan todos los colores del arco iris; cada color corresponde a una longitud de onda bien definida. Si seguimos aumentando la longitud de onda pasamos a la luz infrarroja, a la que ya no son sensibles nuestros ojos, luego las microondas y finalmente las ondas de radio de uso tan común y cuya longitud de onda se sitúan entre pocos centímetros hasta varios cientos de metros. Entre los rayos gamma y las ondas de radio tenemos un muy amplio espectro de luz, y solo una pequeña zona de ese espectro es directamente perceptible a la visión. Para captar fotones fuera de nuestro rango de percepción visual necesitamos detectores artificiales.
Las partículas del mundo atómico se comportan de manera totalmente ajena a nuestra experiencia diaria. Por eso, los físicos tienen que recurrir a las matemáticas para describir adecuadamente la realidad. En 1929 el gran físico inglés P. A. M. Dirac encontró una descripción matemática del electrón que explicaba las características de esa partícula. Sin embargo, su teoría adolecía de ciertas fallas que hubieran desanimado a un físico con menos imaginación, pero que le sirvieron para hacer una atrevida predicción. En efecto, la teoría matemática de Dirac podía ser congruente a condición de redefinir el concepto mismo de vacío. Esto, a su vez, implicaba la existencia de una partícula idéntica al electrón, excepto en la carga eléctrica, que debía ser de signo contrario. Más aún, esa partícula debía tener la propiedad de aniquilarse totalmente con un electrón tan pronto entrara en contacto con él. A esa partícula Dirac la llamó antielectrón, o también positrón, por tener carga positiva.
Pero dos partículas no pueden esfumarse sin dejar rastro. Cuando un electrón y un positrón se destruyen mutuamente la masa de las dos se transforma totalmente en energía. Este fenómeno es una excelente demostración de la equivalencia entre masa y energía descubierta por Albert Einstein y resumida en la famosa fórmula:
E = mc2, (energía igual a masa por la velocidad de la luz al cuadrado)7
. La fórmula de Einstein implica que, en condiciones apropiadas, la materia puede transformarse en energía y viceversa. Así, Dirac predijo que un electrón y un positrón, al entrar en contacto, se aniquilarían transformando toda su masa en fotones de muy alta energía, más precisamente, dos fotones gamma.
El espacio cósmico está lleno de todo tipo de partículas sueltas (fotones, electrones, etc). Las que llegan a la Tierra producen los llamados rayos cósmicos. En 1932, Carl Anderson estudiaba estas partículas cuando descubrió una que, según indicaba su movimiento, tenía la misma masa que un electrón, pero carga eléctrica positiva. ¡Se trataba del positrón!
Una vez establecida la existencia del antielectrón, los físicos se percataron de que, de acuerdo con la teoría de Dirac, también deberían existir antiprotones y antineutrones. Y en efecto, éstos fueron descubiertos en los años cincuenta. Más aún, es perfectamente factible que existan antiátomos, formados por un núcleo de antiprotones y antineutrones, alrededor del cual giran positrones. Y con esos antiátomos se pueden formar objetos de antimateria, quizá antiplanetas, antiestrellas y ¡hasta antiseres vivos!
En resumen, a cada tipo de partícula corresponde una antipartícula con la cual se puede aniquilar si hacen contacto. La única excepción es la luz, ya que el fotón es su propia antipartícula. Dicho de otro modo, la luz no distingue entre materia y antimateria. En consecuencia, un objeto de antimateria se ve exactamente como si estuviera hecho de materia ordinaria.
Para dar una idea de las cantidades de energía implicadas, mencionemos que una tonelada de antimateria produce, al aniquilarse con una cantidad igual de materia, tanta energía como la que se consume actualmente en la Tierra durante un año. Desgraciadamente, no poseemos reservas de antimateria ni es factible producirla en grandes cantidades y almacenarla. Para producir una cierta cantidad de antimateria es necesario invertir la misma cantidad de energía que produciría su aniquilación. Y esa energía, a su vez, habría que sacarla de alguna fuente tradicional petróleo, uranio, etcétera. (Una ley fundamental de la física es que la energía no se crea ni se destruye, sólo cambia de forma).
¿Qué tanta antimateria hay en el Universo? No se puede dar respuesta definitiva a esta pregunta porque, como la luz no distingue entre materia y antimateria, estas se ven idénticas. En principio, algunas de las estrellas o galaxias que vemos en el firmamento podrían ser de antimateria. Quizá existen antimundos habitados por seres de antimateria. La única manera de comprobarlo es ir a ellos o esperar su visita. Pero si algún ser formado de antimateria llegara a la Tierra, las consecuencias serían catastróficas para todos: al entrar en contacto con nuestra atmósfera explotaría, liberando tanta energía como varias explosiones nucleares juntas.
Para nuestra tranquilidad, es poco probable que abunde la antimateria en las cercanías del Sistema Solar. El encuentro de antimateria con materia produce enormes cantidades de energía en forma de rayos gamma; si hubiera mucha antimateria en nuestra vecindad cósmica, presenciaríamos continuas explosiones de rayos gamma, lo cual no es el caso.8
![]()
Por otra parte, es importante señalar que así como una partícula y una antipartícula pueden convertir sus masas enteramente en energía energía de los fotones gamma que producen, el proceso contrario también ocurre en la naturaleza. Dos fotones gamma que choquen entre sí pueden producir una pareja de partícula y antipartícula, transformando así toda su energía en masa. Para que ello ocurra, los fotones deben poseer suficiente energía para generar una partícula y una antipartícula. La masa de un electrón es de 9 X 10-28 gramos; de acuerdo con la fórmula de Einstein, esta masa equivale a una energía 8 X 10-7 ergs; a su vez, esta energía es la que posee un fotón gamma cuya longitud de onda es de unos 2 x 10-10cm. Por lo tanto, dos fotones gamma con esa longitud de onda o una menor pueden producir un electrón y un positrón. 9
Y si la energía de los fotones es unas 1800 veces mayor; entonces tendrán suficiente energía para crear pares de protones y antiprotones. Estos procesos son un excelente ejemplo de la equivalencia entre masa y energía.
Sólo hay una situación en la naturaleza en que materia y antimateria pueden coexistir. Un gas a una temperatura de unos 5 000 000 000 de grados Kelvin l0
o más está compuesto principalmente de electrones, positrones y fotones gamma. Al chocar un electrón y un positrón, se aniquilan produciendo un par de fotones gamma, pero siempre hay otra pareja de fotones gamma que chocan entre sí para producir un par de electrones y positrones, manteniendo así el número total de partícula de cada tipo. De este modo, a tan altas temperaturas la materia y la antimateria coexisten con la intermediación de los fotones, creándose y aniquilándose continuamente las partículas y las antipartículas. Y si la temperatura del gas excede los diez billones de grados Kelvin, los fotones tendrán suficiente energía para generar también pares de protones y antiprotones.
Como veremos más adelante en este libro, los físicos han calculado que, de acuerdo con la teoría de la gran Explosión, había en el principio del Universo casi la misma cantidad de materia como de antimateria pero, después de unas fracciones de segundo, todas las antipartículas se aniquilaron con las partículas. Afortunadamente para nosotros, había un ligerísimo excedente de materia que no tuvo contraparte con qué aniquilarse y dio origen a las estrellas, los planetas y sus habitantes. Así, de acuerdo con la teoría del Origen del Universo más aceptada en la actualidad, la antimateria debe ser muy escasa. Sobreviven, si acaso, algunos raros fragmentos.
ONDA-PARTÍCULA: EL MUNDO CUÁNTICO
Mencionamos anteriormente que la luz, que pareciera ser una onda, se comporta algunas veces como una partícula. Algo enteramente análogo ocurre con las partículas: a nivel cuántico se comportan también como ondas. Louis de Broglie fue el primero en proponer que una partícula cuántica tiene las propiedades de una onda, cuya longitud es:
h/mv, donde h es la constante de Planck, m la masa de la partícula y v su velocidad. Todas las partículas del mundo subatómico electrones, protones, etc. presentan esta dualidad. Éste es el principio fundamental de la mecánica cuántica rama de la física que surgió a principios del siglo
XX
para explicar los fenómenos del mundo microscópico.Para ejemplificar una de las peculiaridades del mundo cuántico, quizá la más notoria, imaginemos un experimento que consiste en lanzar electrones hacia una pantalla. La mecánica cuántica predice cuántos electrones llegan a una región determinada de la pantalla, según las condiciones que estas partículas encuentren en su camino.
Supongamos que el experimento se realiza de tal manera que el haz original de electrones pasa por dos rendijas y se divide en dos haces Figura 3(a). Si se tratara estrictamente de partículas, uno esperaría que los electrones se acumulen en la pantalla en dos montones localizados cada uno enfrente de las dos rendijas. Pero el experimento real revela que esto no es lo que ocurre. Más bien, los electrones se acumulan sobre la pantalla formando franjas, o lo que en el lenguaje de la óptica se llama un patrón de interferencia. Esto es exactamente lo que se esperaría si los electrones fuesen ondas. Piénsense, por ejemplo, en dos olas que se originan en puntos distintos y se cruzan; el resultado, como lo muestra la figura es que las crestas de las olas se suman para hacerse más altas, y los valles se suman para hacerse más profundos.
Por otra parte, si en el experimento de los electrones tapamos una de las rendijas, entonces el resultado es que los electrones se acumulan enfrente de la rendija abierta como si fuesen partículas. De algún modo abandonan su comportamiento de onda (Figura 3b).
![]()
Figura 3. Los electrones se comportan como ondas al pasar por dos rendijas (a), pero como partículas si se tapa una de las rendijas (b).
Pero la situación más sorprendente ocurre si nos empecinamos en determinar por cuál rendija pasa cada electrón individualmente. Uno podría pensar que la mitad de los electrones pasa por una rendija y la otra mitad por la otra. ¿Y qué sucede con un solo electrón? La respuesta parece trivial: pasará por una u otra rendija. Sin embargo, en el mundo cuántico esta condición se ha topado con serias dificultades. En efecto, si uno encuentra la manera de seguir la pista de los electrones para determinar por dónde pasan, entonces los electrones se comportan como partículas y desaparece el patrón de interferencia.
La mecánica cuántica tiene dos interpretaciones que son conceptualmente muy distintas. De acuerdo con una primera interpretación, la mecánica cuántica sólo se aplica al estudio estadístico de un número grande de partículas; en el ejemplo anterior se puede predecir lo que harán los electrones en su conjunto, pero nada puede decirse del comportamiento de cada electrón por separado. En este sentido, la mecánica cuántica no sería una teoría completa de la naturaleza. Esta interpretación fue la que defendió Albert Einstein durante toda su vida, en contra de la opinión mayoritaria de los físicos de su época.
De acuerdo con una segunda interpretación la mecánica cuántica sí se aplica a una sola partícula. En el ejemplo del haz de electrones, un electrón pasa simultáneamente por las dos rendijas y las dos posibilidades son de igual modo "reales". El electrón permanece latente en las dos posiciones hasta que lo detectamos, con lo cual lo forzamos a mostrarse en una sola de esas opciones.
Esta segunda interpretación parece absurda, pues nada parecido ocurre en nuestro mundo macroscópico. Si lanzamos una moneda al aire muchas veces, aproximadamente la mitad de las veces caerá águila y la otra mitad sol. ¿Y si no miramos como cae? ¿Puede afirmarse que una moneda cae simultáneamente águila y sol hasta que la miremos y veamos una de las dos posibilidades? La diferencia fundamental con lo que sucede en el mundo cuántico consiste en que el mirar una moneda no influye en ella, pero detectar la posición de una una partícula como un electrón implica mandarle luz, la que modifica drásticamente su comportamiento. Los fundadores de la mecánica cuántica siempre insistieron en que, a nivel atómico, es imposible abstraerse de la relación entre observador y observado. Toda medición altera la realidad que estudia y esta alteración es fundamental para las partículas elementales. Esta interpretación se debe principalmente al físico danés Niels Bohr a quien se considera uno de los creadores de la mecánica cuántica y se conoce como interpretación de Copenhague. Einstein y Bohr sostuvieron durante toda su vida una amistosa pero apasionada disputa acerca de la interpretación de la mecánica cuántica, sin llegar jamás a un acuerdo.
El lector podrá pensar que, en la práctica, cualquiera de las dos interpretaciones de la mecánica cuántica debe conducir a los mismos resultados. Pero lo interesante es que, en los recién pasados años, se ha logrado realizar experimentos reales (no sólo imaginarios) aislando y utilizando unas pocas partículas elementales, discriminando así entre una u otra interpretación. Hasta ahora, los resultados experimentales parecen inclinar la balanza hacia la interpretación de Copenhague, en contra de las ideas de Einstein (por lo menos en sus modalidades más sencillas). Pero el debate iniciado por Einstein y Bohr aún está lejos de quedar resuelto.
![]()