V. MÁS ALLÁ DEL MODELO ESTÁNDAR

LA GRAN UNIFICACIÓN

EL ÉXITO de Weimberg y Salam para unificar las interacciones eléctricas y débiles hizo renacer el viejo sueño de llegar a una teoría que unifique todas las interacciones. El hecho de que Einstein haya fracasado en su intento por unificar la gravitación con el electromagnetismo parecía indicar que la interacción gravitacional es la más difícil de tratar, así que ¿por qué no intentar primero unificar las interacciones fuertes con las electrodébiles y dejar la gravedad para una mejor ocasión? El ideal se conoce como Teoría de la Gran Unificación (TGU).

Recapitulemos lo que debería unificar tal teoría: las interacciones de color entre cuarks, mediadas por gluones, y las interacciones electrodébiles entre leptones y cuarks, mediadas por fotones y partículas W y Z.

En los años setenta surgieron varias propuestas acerca de la TGU. Su elemento común es la hipótesis de que existen partículas extremadamente masivas, a las que se llamó partículas X; que son responsables de mediar entre los leptones, los cuarks y los gluones. Estas partículas X serían partículas W y Z que, recordemos, adquieren sus masas de un campo de Higgs.

Para que la teoría funcione tales partículas X hipotéticas deberían obtener su masa a partir de... ¡otros campos de Higgs! Tendrían una masa de unos 10-10 gramos, lo cual equivale a la masa de ¡trillones de protones! Y la vida media de tales partículas sería de apenas unas 10-38 segundos.

El campo de Higgs para estas partículas dejaría de actuar a una temperatura de unos 1027 grados Kelvin. Por arriba de esa temperatura las interacciones fuertes no serían distinguibles de las electromagnéticas y débiles. Al igual que en la teoría de Weinberg-Salam se produciría un cambio de fase a la temperatura mencionada y, por abajo de ella, las interacciones fuertes se separarían de las electrodébiles.

Tales temperaturas sólo pudieron existir en los primeros instantes después de la Gran Explosión, como veremos en el capítulo VII. Crear partículas X en la Tierra está completamente fuera de toda posibilidad práctica. Los grandes aceleradores construidos en la actualidad apenas pueden generar partículas W y Z, que son "sólo" 100 veces más masivas que un protón. Entonces, ¿las teorías de la Gran Unificación están condenadas al ámbito únicamente de la cosmología? Afortunadamente se conoce al menos una dirección que no está totalmente fuera de la tecnología actual.

DECAIMIENTO DEL PROTÓN

Una de las predicciones más importantes de la TGU es que el protón no es eterno; su vida promedio debería ser de unos 1031 años. De acuerdo con la teoría mencionada un protón puede decaer espontáneamente en un positrón y un pion.

Hasta donde se sabe el protón es una partícula estable ya que aislado, no se transforma en ninguna otra partícula. También un electrón es absolutamente estable y, aislado, nunca decae. Por ello la materia es indestructible.

Si el protón no es una partícula eterna, ¿cuánto vive en promedio? Hace algunos años los físicos decidieron comprobar con experimentos si esta partícula es eterna. El motivo no era sólo curiosidad sino confirmar la Teoría le la Gran Unificación mencionada en la sección anterior.

Evidentemente no podemos esperar un billón de trillones de años para comprobar si los protones se transforman en positrones. Sin embargo, ésta es una edad promedio. La vida de un ser humano, por ejemplo, es de unos 70 u 80 años en promedio, pero esto no implica que todos mueran a esa edad; unos viven más y otros menos; incluso puede darse el caso de muertes prematuras. Lo mismo sucede con los protones: en un conjunto de un billón de trillones de estas partículas, uno al año desaparecerá en promedio por muerte muy prematura.

En los años ochenta se empezó a practicar una serie de experimentos destinados a descubrir el decaimiento de un protón. La idea básica era colocar detectores de positrones en una gran cantidad de agua y esperar la aparición de una de estas partículas. En la práctica se necesitan varios miles de toneladas de agua para detectar unos cuantos decaimientos al año de protones en positrones y piones. Además, el agua debe colocarse a gran profundidad debajo de la tierra para evitar toda contaminación por los rayos cósmicos provenientes del espacio, entre los cuales también se encuentran positrones. Así, para detectar la muerte de los protones se utilizaron minas abandonadas: una en Ohio y otra en Dakota del Sur, en los EUA, otra mina en Japón, una más en un túnel debajo le los Alpes, etcétera.

La búsqueda fue larga y difícil, pero todos los experimentos convergen, hasta ahora, en una conclusión unánime: no se ha detectado ningún decaimiento de protón. Con base en los experimentos más recientes, su vida media debe exceder 3 X 1032 años.

Este límite inferior para la vida promedio del protón descarta la versión original y más sencilla de la TGU. Sin embargo, una forma modificada de la teoría todavía podría ser compatible con el resultado de los experimentos. Por ahora, la TGU es una hipótesis, aunque sus implicaciones para la cosmología son sumamente interesantes.

Para todo fin práctico podemos afirmar que el protón es estable y, por lo tanto, la materia es eterna. Pero ¿qué pasaría si el protón no fuera estrictamente eterno? Su vida media podría ser, por ejemplo, 1034 años, lo cual todavía no está descartado por los resultados experimentales. En tal caso, podemos especular que, dentro de 1034 años la materia en el Universo empezará a degradarse. Los protones se transformarán en positrones. Estas partículas, a su vez, al entrar en contacto con los electrones se aniquilarán totalmente transformándose en luz. Finalmente el Universo ya no contendrá materia sino sólo luz ¡Imposible imaginar un Universo más aburrido! Queda la posibilidad de que, antes de que suceda esto, el Universo se colapse sobre sí mismo para renacer con nueva y fresca materia, lo cual podría ser factible según la cosmología moderna. Pero para nuestra experiencia mundana podemos estar seguros de que la materia es, prácticamente, eterna.

¿GRAVEDAD CUÁNTICA?

Aún no sabemos si tiene sentido una Gran Unificación como la mencionada antes, pero mientras se aclara esta duda podemos preguntarnos si la gravedad podría entrar en algún esquema de unificación. ¿Quizás exista una temperatura de la cual las cuatro interacciones fundamentales de la naturaleza se encuentran unificadas? Esto, hasta ahora, es una especulación. El principal escollo es que no tenemos ninguna idea clara de cómo se comporta la gravedad a nivel cuántico.

Para ubicar el problema veamos cuáles son los límites de la relatividad general. Para ello, recordemos que las dos constantes que entran en esta teoría son G; la constante de Newton, y c, la velocidad de la luz. En una teoría cuántica de la gravitación,sea cual fuere su forma, tendría que aparecer también otra constante fundamental para incluir los efectos cuánticos: ésta sería h, la constante de Planck.

G, c, y h son las tres constantes fundamentales de la naturaleza y sus valores se han determinado experimentalmente. El mismo Planck se dio cuenta de que es posible combinarlas entre sí para obtener unidades de longitud, tiempo y masa. En efecto, la combinación:

 

tiene unidades de longitud y vale unos 10- 33 centímetros; del mismo modo, la combinación:

 

tiene unidades de tiempo y equivale a unos 5 X 10-44 segundos; por último, la combinación:

tiene unidades de masa y equivale a unos 5 X 10-5 gramos. La longitud y el tiempo de Planck son las unidades naturales de un nivel de la realidad aún desconocido, muchísimo más pequeño que el mundo cuántico. Para tener una idea sencilla: el tamaño más común de un átomo es de unas 1025 longitudes de Planck. En el mundo de Planck, la fuerza gravitacional vuelve a ser de fundamental importancia: los fenómenos cuánticos y gravitacionales se relacionan íntimamente entre sí, y ni la mecánica cuántica ni la relatividad general son válidas por sí solas.

La creencia más difundida es que la relatividad general se aplica en distancias e intervalos de tiempo mucho mayores que la longitud y el tiempo de Planck, del mismo modo que la mecánica de Newton es válida para objetos mucho más grandes que un átomo. Por otra parte, la masa de Planck es muchísimo mayor que la masa de cualquier partícula elemental; se piensa que esta masa esta relacionada con la energía necesaria para "romper" una partícula elemental, energía que queda completamente fuera de todas nuestras posibilidades tecnológicas.

Si el campo gravitacional es, en realidad, una curvatura del espacio-tiempo debemos suponer que en el mundo de Planck, donde dominan los efectos cuánticos y gravitacionales, el espacio-tiempo posee fluctuaciones cuánticas como cualquier campo. Así como los océanos presentan aspecto llano y tranquilo desde el espacio exterior pero poseen olas, turbulencias y tormentas a escala humana, el espacio-tiempo parece liso a gran escala pero es extremadamente turbulento en el nivel de Planck.

Las fluctuaciones cuánticas del espacio-tiempo debieron manifestarse en toda su plenitud durante los primeros instantes del Universo. Según una hipótesis muy popular en la actualidad, las mismas galaxias tuvieron su origen en esas fluctuaciones cuánticas, cuando la edad del Universo era comparable al tiempo de Plank. Volveremos a este tema en el capítulo VIII.

Prácticamente desde que la mecánica cuántica tomó la forma con que se la conoce actualmente muchos físicos intentaron crear una teoría cuántica de la gravitación. A pesar de varios intentos interesantes todavía no se tiene una respuesta convincente. La gravitación cuántica es el gran hueco en la física de las interacciones fundamentales. Incluso algunos se han preguntado si tiene sentido hablar de la gravitación a nivel cuántico: ¿quizás esta fuerza fundamental es incompatible con la mecánica cuántica?, ¿quizás la gravedad es una manifestación de otro fenómeno insospechado...? Todas éstas son dudas aún sin resolver. Mientras, es justo señalar que ha habido varios intentos por cuantizar la gravedad. El más reciente tiene que ver con lo que se conoce como teoría de las supercuerdas, la cual reseñaremos brevemente a continuación.

LAS SUPERCUERDAS

A principio de los años setenta algunos físicos tuvieron la idea de concebir cada partícula elemental como un cierto estado de una cuerda de tamaño subatómico. Esto sería el equivalente a una cuerda de guitarra que según la frecuencia de su vibración emite una nota y, cambia al variar la frecuencia. Siguiendo esta analogía las partículas elementales serían las distintas notas de cuerdas microscópicas.

Esta teoría era, más que nada, un modelo matemático que permitía resolver algunos problemas de cálculo a los que se enfrentaban los físicos teóricos. En realidad, pocos la tomaron en serio como una teoría fundamental de la naturaleza. Pero algunos años más tarde surgió una versión mucho más refinada de la teoría de las cuerdas que causó muchas expectativas entre la comunidad de físicos, pues sus proponentes prometían nada menos que explicar toda la física. Nos referimos a la teoría le las supercuerdas.

En primer lugar aclaremos que el prefijo súper se refiere a que la nueva teoría trata en un mismo nivel a los fermiones y a los bosones, los dos tipos fundamentales de partículas elementales. Fermiones y bosones tienen propiedades distintas y la clase de matemáticas necesaria para describir a uno u otro tipo de partículas es distinta. Cualquier teoría física que unifique las dos clases de partículas merece, para los físicos, el calificativo de súper.

Pero lo más peculiar de la teoría de las supermoléculas es que estos objetos existen en un espacio de muchas dimensiones. El número de dimensiones necesarias era nada menos que ¡24! en las primeras versiones de la teoría (posteriormente bajó a 10). Esto hubiera desanimado a cualquier físico, pero los autores de la teoría propusieron que nuestro mundo posee realmente más de cuatro dimensiones, de las cuales nosotros sólo vemos cuatro, por razones que explicaremos a continuación.

Como ya mencionamos en relación con la teoría de la relatividad, nuestro espacio posee tres dimensiones y, junto con el tiempo, forma el espacio-tiempo de cuatro dimensiones. Es difícil concebir un espacio de más de tres dimensiones pero, por lo contrario, es muy sencillo visualizar espacios de menor dimensión. La superficie de la Tierra, por ejemplo, es un espacio de dos dimensiones; con los números, la longitud y la latitud, podemos especificar plenamente cualquier punto de ese espacio. Del mismo modo, una curva (piénsese por ejemplo en un hilo) es un espacio de una sola dimensión; cualquier punto sobre una curva se puede determinar con un único número, que puede ser la distancia desde un punto fijo. Y, finalmente, un punto es un espacio de cero dimensiones.

Imaginemos un hilo delgado que, como ya sabemos, es un espacio de una sola dimensión. Pero esto es relativo ya que, para una pulga, un hilo tiene una superficie y esa superficie es un espacio de dos dimensiones. La pulga puede pasearse a lo largo del hilo y también puede darle la vuelta para regresar al mismo punto. En cambio el único movimiento que ve un humano es a lo largo del hilo. Otro ejemplo: la Tierra es un cuerpo de gran tamaño para nosotros pero, a escala del Universo, es apenas un punto, un espacio de cero dimensiones.

Estos ejemplos ilustran el hecho de que el número de dimensiones depende de la escala considerada, siempre que sea posible "dar la vuelta" al espacio moviéndose en una o más direcciones. En ese caso, el número total de sus dimensiones no se manifiesta más que a escalas suficientemente pequeñas, escalas comparables con el radio del espacio.

Ahora bien, de acuerdo con la teoría de las supercuerdas nuestro espacio tiene muchas dimensiones, pero de éstas, sólo cuatro se manifiestan en nuestra experiencia diaria. Para percibir las otras dimensiones sería necesario "ver" distancias extremadamente pequeñas: ¡del tamaño de la longitud de Planck! Y ese es también el tamaño aproximado de una supercuerda.

Las supercuerdas causaron mucho revuelo a mediados de los años ochenta. Algunos físicos muy optimistas anunciaban ya la solución final a todos los problemas de la física teórica. La teoría pretendía describir todas las fuerzas de la naturaleza, desde la fuerza gravitacional que gobierna el movimiento de las estrellas y los planetas hasta las fuerzas nucleares que se manifiestan sólo en los núcleos atómicos, pasando por las fuerzas eléctricas y magnéticas.

Desafortunadamente, a pesar de un inicio muy prometedor la teoría se ha topado con serias dificultades debidas al enorme aparato matemático que necesita, cuya complejidad no permite tener una imagen intuitiva de lo que realmente está pasando. La principal dificultad es que las primeras notas de las supercuerdas corresponden a partículas cuya masa es comparable a la masa de Planck, y quedan, por lo tanto, fuera de toda posibilidad de ser detectadas. En cuanto a la masa de las partículas comunes se tiene que recurrir a un mecanismo del tipo de un campo de Higgs para explicar por qué hay partículas masivas como un electrón o un cuark, así que, en ese aspecto, la teoría de las supercuerdas no ha aportado nada todavía. Pero algo quedará; por lo menos una nueva visión del mundo subatómico.

InicioAnteriorPrevioSiguiente