II. LAS LLAVES DE LA BIBLIOTECA DE LA VIDA: LA NUEVA HERRAMIENTA DE LA INGENIERÍA GENÉTICA

La nueva herramienta: posibilidad de aislar, caracterizar y manipular los genes

LA INFORMACIÓN ya mostrada en los recuadros I.1 y I.2 sobre la estructura y función básica de los genes se conocía desde finales de los años sesenta. Más aún, la labor de los bioquímicos había producido un gran cúmulo de conocimientos respecto de los conjuntos de reacciones químicas que ocurren dentro de los seres vivos. Las vías metabólicas fundamentales para la generación de energía y la biosíntesis de la mayoría de los compuestos esenciales para la vida ya estaban establecidos.

Este conocimiento se basaba en la aplicación inteligente de métodos de ensayo y purificación de enzimas clave, y de la identificación y análisis de sus sustratos y productos. Al mismo tiempo, otras disciplinas como la inmunología y la genética, realizaban avances y eran actividades de gran complejidad y finura.

La biología molecular, sin embargo, se encontraba en un punto en el que su desarrollo se había hecho muy lento. Una vez sentadas las bases fundamentales de la replicación y expresión de la información genética, el siguiente paso era desentrañar; en forma detallada, los mecanismos de regulación de la expresión genética.

Todas las vías metabólicas, la expresión de anticuerpos, la actividad de los virus, en fin, todas las manifestaciones del fenómeno viviente, están, en última instancia, orquestados por la expresión ordenada y regulada de los genes, por medio de la producción de proteínas específicas.

El extraordinario proceso por el cual una sola célula, el huevo fecundado, da origen a un organismo complejo, es decir; las etapas de diferenciación celular; constituía un reto extremadamente atractivo, pero a la vez formidable. No se esperaba poder descifrarlo a un paso siquiera aceptable sin la capacidad de hacer una disección del genoma, de irlo analizando pieza por pieza.

Un descubrimiento clave inició el cambio dramático que conocemos hoy como ingeniería genética o ADN recombinante: en 1970 Hamilton Smith y Daniel Nathans descubren una enzima capaz de reconocer y cortar el ADN en secuencias específicas, que les valió el Premio Nobel de fisiología o medicina, compartido con Werner Arber, en 1978.

Este descubrimiento (consecuencia de un hallazgo accidental, en el que los investigadores profundizaron con gran sentido) dio origen a una sucesión de nuevos descubrimientos y potenció el desarrollo de toda una serie de otras disciplinas y metodologías. En este capítulo revisaremos los fundamentos de algunas de las más importantes.

ENZIMAS DE RESTRICCIÓN

Muchos microorganismos producen enzimas que modifican y digieren o rompen el ADN. Estos sistemas, llamados de modificación-restricción, son análogos a un sistema inmune, los cuales probablemente evolucionaron como un mecanismo de protección de los microorganismos contra infecciones virales. En efecto, las bacterias, por ejemplo, son infectadas por virus, llamados bacteriófagos, que inyectan su propio ADN en la célula bacteriana para después controlar su maquinaria celular y redirigirla hacia la síntesis de sus propios componentes, dando como resultado final la ruptura de la célula y la liberación de cientos o miles de nuevos virus. En algunas bacterias el ADN propio está modificado en ciertas secuencias. Una enzima de modificación se desliza sobre la hebra de ADN, y cada vez que se topa con su secuencia blanco, por ejemplo GAATTC, introduce un pequeño grupo químico en la adenina (A) central. Otra enzima, la enzima de restricción, también se desliza en la hebra de ADN, y si encuentra la secuencia GAATTC, corta el ADN en esa posición. La enzima, sin embargo, no corta el ADN modificado, por lo que efectivamente es capaz de degradar el ADN extraño que puede entrar a la célula, sin alterar el ADN propio.

Hoy en día conocemos miles de diferentes enzimas de restricción, provenientes de otros tantos distintos microorganismos. Más de cien distintas secuencias pequeñas de ADN pueden ser rotas, específicamente, por medio del uso de la adecuada enzima de restricción.

Otra interesante propiedad de las enzimas de restricción es que, en general, reconocen secuencias palindrómicas, es decir; secuencias que son iguales si se leen en una dirección, o en la dirección contraria. Por ejemplo:

— 5´GAATTC3´—

— 3´CTTAAG5´—

es una secuencia palindrómica. Cuando actúa la enzima que reconoce y corta esta secuencia, llamada EcoRI, genera segmentos de ADN con extremos que se proyectan fuera de la doble cadena:

— 5´G                 AATTC3´—

— 3´CTTAA                G5´—

Estos extremos se denominan cohesivos o pegajosos, porque tienden a aparearse o hibridarse nuevamente. En realidad, cualquier extremo de ADN generado por un corte con EcoRI puede hibridarse o aparearse con otro extremo generado por la misma enzima.

Los descubridores de las primeras enzimas de restricción pronto se dieron cuenta de que su acción sobre el ADN (comúnmente llamada "digestión") producía un conjunto definido de diferentes segmentos. Esto es particularmente fácil de detectar si la digestión se efectúa sobre una molécula pequeña; y tales moléculas existen en la naturaleza. Por ejemplo, ciertos virus están constituidos por genomas muy pequeños. El virus SV4O (que ocasiona cáncer en los simios) contiene una molécula de ADN circular de unos 5 mil pares de bases. Muchas bacterias portan pequeñas moléculas de ADN, llamadas plásmidos, que llevan información accesoria a su cromosoma. Estas moléculas pueden tener también sólo unos miles de nucleótidos. Si se somete el producto de digestión de una de estas moléculas a una separación por electroforesis, después de utilizar la enzima de restricción, se observa un patrón de bandas, que corresponde a los fragmentos de ADN de tamaños correspondientes a la distancia entre un sitio y otro. El principio del proceso es análogo a la separación de proteínas (véase el recuadro II.1).

Súbitamente, el ADN dejó de ser una sustancia monótona y frágil, donde purificar un segmento específico resultaba una tarea ardua o imposible. Al poder generar segmentos específicos, con las enzimas de restricción, la molécula de la vida quedó a merced del biólogo molecular. Es como si alguien jalara la cinta de un casete de audio, la amontonara desordenadamente y luego nos pidiera que separáramos el segmento que contiene una canción. Sería útil disponer de unas tijeras que cortaran la cinta cada vez que apareciera la sucesión de notas si, la, sol, do, re, mi, y después un ayudante acomodara los segmentos resultantes, de acuerdo con su tamaño. O imaginemos lo dificil que seria identificar un artículo de la enciclopedia, si está escrito sobre un listón de varios kilómetros de largo. Cómo se facilitaría la tarea si nuestras tijeras encontraran automáticamente, por ejemplo, la palabra "obtener", y ahí cortaran el listón. Luego nuestro ayudante nos presentaría 20 ó 30 cajas, cada una conteniendo pedazos de listón clasificados de acuerdo con su tamaño.

RECUADRO II. 1. La separación de los ácidos nucleicos

 

Cuando se utiliza la electroforesis, es posible visualizar la acción de las enzimas de restricción. Si se colocan muestras que contienen ADN de diversos tamaños en los pozos de un gel en forma de placa, y se aplica corriente eléctrica, la diferencia de velocidad de migración de estas moléculas las distribuirá, por separado, al cabo de un tiempo, dentro del gel. Si después se agrega una sustancia que se hace luminosa al interaccionar con el ADN y bañarse con luz ultravioleta, directamente se puede observar el patrón de distribución de las bandas constituidas por las moléculas de diversos tamaños, por medio del cual es factible deducir sus respectivas dimensiones.

Al usar diferentes enzimas de restricción, se generan diferentes segmentos. Por ejemplo, si la secuencia reconocida por la enzima Sall aparece en la molécula del ejemplo una vez, cortaría el segmento en dos partes. Si la secuencia reconocida por EcoRI, aparece dos veces, generaría tres pedazos. Al usar las dos enzimas simultáneamente, se producirían cuatro segmentos.



CONCEPTO DE CLONACIÓN MOLECULAR

Como ya mencionamos, los fragmentos generados por las enzimas de restricción tienen además la propiedad de reasociarse unos con otros, por medio de sus extremos cohesivos. Cuando los investigadores de la genética bacteriana conocieron estas enzimas de reciente caracterización, a principios de los años setenta, se dieron cuenta de algo sumamente importante: si se reasocia un segmento de restricción proveniente de un organismo con otro segmento, generado por la misma enzima pero proveniente de otro organismo, se obtendría una molécula híbrida o quimérica, una molécula de ADN recombinante. De hecho, dado que el ADN de todos los organismos vivientes tiene una naturaleza química idéntica, no deberían existir limitaciones para recombinar el ADN de cualquier origen. Algunos investigadores intuyeron el monumental potencial de este concepto. Los laboratorios de Paul Berg, Stanley Cohen (en la Universidad de Stanford) y de Herbert Boyer (en la Universidad de California, San Francisco) se dieron así a la tarea de hacer que este concepto se convirtiera en realidad.

Para reasociar dos moléculas de ADN es necesario reconstituir el enlace fosfodiéster (un enlace covalente, fuerte), y aquí entra en acción otra enzima que había ya sido descrita para entonces: la ADN ligasa. De esta forma podían tomarse las dos moléculas, reasociarlas (hibridizarlas) y luego ligarlas, se obtiene una molécula continua, recombinante, la cual, sin embargo, es algo inerte en tanto no sea introducida a una célula que la transcriba y traduzca (véase el recuadro I.2). Además, algo muy importante: esta molécula debe ser capaz de perpetuarse (replicarse dentro de la célula). De otra manera se diluiría y perdería irremisiblemente después de que la célula se dividiera. Finalmente, era necesario identificar las células en las que el ADN recombinante se hubiera introducido y establecido.

Así tenemos los elementos esenciales de la técnica de ADN recombinante (véase el recuadro II.2):

El primer experimento en el que se puso en práctica este concepto, realmente simple, que se conoce como clonación molecular se logró al utilizar plásmidos bacterianos como vehículos y ADN, también bacteriano, como pasajero.

RECUADRO II. 2. Los procedimientos básicos del ADN recombinante

El producto de la digestión del ADN con endonucleasas de restricción está constituido por muchos fragmentos específicos, cuyos extremos son compatibles o cohesivos unos con otros. Estos fragmentos se ligan después a un segmento especial de ADN, el vehículo de donación (usualmente un plásmido), que fue cortado con la misma enzima. Las moléculas recombinantes resultantes contienen un ADN vehículo o vector y un ADN pasajero, constituyendo una nueva molécula circular continua.

Estas moléculas se introducen a células bacterianas y se seleccionan por medio de "genes marcadores" presentes en el vehículo de donación. Dentro de su secuencia de ADN los vehículos de donación contienen señales que inducen la replicación del ADN, y otras que producen, típicamente, resistencia a algún antibiótico. Así, las células que reciben una molécula recombinante la perpetúan en su interior, y se pueden detectar porque ésta confiere a la célula la capacidad de sobrevivir en presencia del antibiótico.





Uno de los primeros vehículos moleculares de donación, el plásmido denominado pBR322, fue construido por el doctor Francisco Bolívar, investigador mexicano que se encontraba trabajando en su postdoctorado, a mitad de los años setenta, en la Universidad de California, San Francisco. Este plásmido se ha usado innumerables veces y servido de base para la construcción de la mayoría de los vehículos más modernos de donación. Por la participación del doctor Bolívar en estas investigaciones, aunado a sus otras aportaciones a la ciencia mexicana e internacional, fue galardonado con el premio internacional Príncipe de Asturias en el área científica, en 1992, que otorga el gobierno español.

Consideremos ahora las consecuencias de un experimento de donación molecular. Los segmentos de ADN que se encontraban dispersos en largas y monótonas hebras de ADN, resultan ahora disociados en segmentos específicos, y cada uno puede ser perpetuado independientemente. Disponemos ahora de una biblioteca genómica o genoteca, que podemos mantener indefinidamente con sólo mantener vivas las células bacterianas que albergan los plásmidos recombinantes. Igualmente, una vez seleccionada una clona de la genoteca, pudimos cultivar las células y obtener cantidades ilimitadas de ADN para su posterior manipulación y caracterización. La elusiva purificación de genes específicos se vuelve una realidad.

Como ya se mencionó, las repercusiones de estos primeros experimentos fueron visualizadas rápidamente, pues incluían también posibles riesgos y problemas, lo cual dio origen a un importante debate, iniciado por la propia comunidad científica (véase el recuadro II.3).

RECUADRO II.3. El debate inicial sobre el ADN recombinante

Una de las formas más interesantes de comunicación dentro de la comunidad científica internacional es la que ocurre informalmente, por medio de llamadas telefónicas, visitas, seminarios, etc. Por este conducto existen redes de científicos que están bastante bien enterados de lo que se está desarrollando en otros laboratorios de las áreas competidoras o afines a la propia. Así se supo que se llevarían a cabo experimentos que pretendían crear una molécula de ADN quimérica, lo cual unía material genético de un virus, causante de cáncer, con el de una bacteria natural del colon humano (Escherichia coli), antes incluso de que se realizaran. Estos experimentos fueron diferidos, pues la preocupación de algunos miembros de la comunidad puso en marcha una serie de conversaciones y correspondencia que llamaba la atención sobre los posibles riesgos de seguir adelante con este tipo de práctica. Fue así como un grupo de científicos decidió organizar un comité que evaluara las posibles consecuencias y riesgos que significaban este tipo de experimentos, durante una reunión científica celebrada en junio de 1973. Para abril de 1974, el comité presidido por Paul Berg (veáse en este capítulo "Concepto de clonación molecular", ) llegó a la conclusión de que era necesario establecer una moratoria que suspendiera la actividad de recombinación in vitro de ADN hasta que se publicaran reglas precisas. En febrero de 1975 se realizó la célebre conferencia de Asilomar, en California, de la que emanaron restricciones importantes acerca de las precauciones que deberían tomarse para efectuar diversos tipos de experimentos relacionados con el ADN recombinante.

Los hechos antes relatados son notables por dos aspectos. En primer lugar, los científicos de ese campo decidieron suspender temporalmente y reglamentar la ejecución de experimentos que revestían enorme interés para ellos y para el avance del conocimiento. En segundo lugar, las cartas emitidas y las recomendaciones muestran una gran capacidad prospectiva. Se ponderaron los riesgos, consignando claramente que éstos eran de carácter especulativo, por lo que se diseñaron mecanismos de confinamiento, tanto biológico como físico, para reducir los riesgos al mínimo.

El debate acerca del ADN recombinante continúa desde entonces. Hay grupos que han mantenido una oposición constante; las acciones de los gobiernos incluyen la creación de reglas detalladas y estrictas. El tiempo, sin embargo, ha probado ya que el balance entre los riesgos y los beneficios de la experimentación en ingeniería genética es abrumadoramente positivo. De hecho, ninguno de los desastres previstos ha tenido siquiera visos de convertirse en realidad. Aparentemente, la probabilidad de crear por accidente un organismo vivo peligroso es muy baja: los organismos ocupan nichos a los que se han adaptado durante millones de años y compiten muy favorablemente con variantes creadas en el laboratorio.

Si el temor de crear organismos monstruosos causantes de epidemias incontrolables o de diseminar enfermedades parece haber sido infundado. Lo que sí ha surgido es toda una serie de problemas éticos, resultado del poderío que confiere al género humano esta metodología. Como suele pasar, no es el accidente, sino la deliberada acción de los individuos lo que conduce a las mayores preocupaciones y trastornos en la sociedad. (En el Epílogo de este libro se hace una reflexión más detallada acerca de este tema).

Durante la década siguiente, en un proceso continuo y creciente de desarrollo metodológico, se constituyó un verdadero arsenal de diferentes herramientas biológicas que aumentaron notablemente la capacidad de aislar; caracterizar y manipular los genes. (La descripción de algunas de las técnicas básicas más importantes se destaca en lo que resta del capítulo. En el capítulo siguiente se ven ejemplos de su aplicación y se describen otras técnicas importantes)

EL ADN SINTÉTICO

Desde la época de los experimentos pioneros en que se definió el código genético fue necesario elaborar moléculas de ácidos nucleicos no naturales. Se inició entonces el desarrollo de las técnicas para sintetizar o fabricar químicamente el ADN. El desenvolvimiento de la química orgánica, que precedió al de la biología molecular; había establecido desde tiempo atrás la naturaleza química de los ácidos nucleicos. Se requirió, sin embargo, un periodo relativamente largo para perfeccionar adecuadamente las técnicas para sintetizar el ADN de manera práctica. Desde fines de los años sesenta, Har Cobind Khorana logró la tarea titánica de elaborar químicamente un pequeño gene a partir de sus precursores básicos (los nucleótidos A, G, C y T). Este trabajo hizo al doctor Khorana merecedor del Premio Nobel de fisiología o medicina en 1968. Los siguientes quince años fueron necesarios para que una técnica laboriosa, que requería la participación de químicos especializados, se convirtiera en una tarea simple y automatizada, al alcance de cientos de laboratorios del mundo. Actualmente, mediante síntesis química se obtienen miles de fragmentos de ADN cada día. El factor clave para la simplificación del procedimiento consistió en lograr la síntesis en fase sólida, que es susceptible de ser adaptada a una máquina automática (véase el recuadro II.4). Las limitaciones de esta técnica sólo permiten sintetizar directamente fragmentos de ADN de un tamaño menor a unas 100 bases, por lo que normalmente se les conoce como oligonucleótidos (o simplemente oligos). De cualquier manera, utilizando las propiedades de hibridación del ADN y de la enzima ADN ligasa, se pueden construir grandes trechos de ADN de doble cadena.

Al disponer de oligos, cuya secuencia está definida por el investigador, se abren posibilidades para crear genes con completa libertad, y también para modificar, en principio sin limitación alguna, a los genes naturales (véase el recuadro II.4). (En secciones sucesivas se verán algunas mas de las múltiples aplicaciones de los oligos sintéticos.)

RECUADRO II.4. El ADN sintético y sus aplicaciones

Para un químico, la tarea de sintetizar moléculas de ADN representa varios retos. El objetivo es ensamblar secuencias definidas, a partir de los cuatro nucleótidos A, G, C y T. Muchos años de trabajo, de varios laboratorios, han culminado en los sintetizadores robóticos que se usan hoy en día, y con los que se producen miles de oligos para las más diversas aplicaciones.

Una vez resuelto el problema de enmascarar selectivamente los grupos químicos presentes en los nucleótidos, se pueden hacer reaccionar ordenadamente, para ir produciendo la secuencia. En la actualidad se utiliza el método en fase sólida, en el que la cadena de ADN va creciendo adherida a pequeñas partículas de vidrio. En la síntesis automatizada, una máquina, constituida por válvulas y botellas controladas por una computadora, va inyectando diversas soluciones al reactor que contiene el vidrio. Cíclicamente se activa el oligo, se le hace reaccionar con la base siguiente y se lava.

Con esta técnica se puede llegar; prácticamente, a oligos de hasta 50 ó 100 nucleótidos de longitud.

Entre las aplicaciones más frecuentes y útiles de oligos sintéticos se encuentra la construcción de genes, que se logra hibridizando oligos complementarios los cuales reconstruyen el ADN dúplex con la secuencia diseñada. Otro enfoque de gran utilidad se denomina mutagénesis dirigida. En este caso, el oligo se usa para alterar específicamente una pequeña región dentro de un gene natural clonado.







ENZIMAS ÚTILES PARA MANIPULAR EL ADN

Hasta el momento hemos mencionado a la ADN ligasa, una importante enzima que permite ligar o unir moléculas de ADN. La investigación sobre la fisiología de los ácidos nucleicos ha proporcionado, además, una serie de enzimas que se utilizan ampliamente para manipular los ácidos nucleicos en el tubo de ensayo, y que forman parte importante de las herramientas del ADN recombinante. Cada una de estas enzimas, al igual que las endonucleasas de restricción, cumple un papel dentro de la célula viva, para alterar el material genético (por ejemplo, para repararlo, replicarlo, degradarlo, recombinarlo, etc.). En el laboratorio se pueden usar estas enzimas, después de purificarlas de sus fuentes naturales, para efectuar transformaciones útiles a los propósitos del experimentador. Por ejemplo, la enzima transcriptasa reversa, que naturalmente producen ciertos virus para invadir el genoma de sus células blanco (véase el recuadro IV.3), se utiliza ampliamente para clonar genes a partir de sus ARN mensajeros (véase el capitulo siguiente).

Dado que el propio desarrollo del ADN recombinante, ha potenciado, a su vez el desarrollo de herramientas moleculares, hoy en día contamos con un enorme número de enzimas y reactivos que permiten gran versatilidad en la manipulacion del ADN.

SECUENCIACIÓN DEL ADN

Una consecuencia inmediata de la clonacion molecular es que permite disponer de cantidades ilimitadas de segmentos específicos de ADN. Debido a que el ADN pasajero se encuentra formando parte de un plásmido, es factible separarlo fácilmente del resto del ADN celular, que se encuentra en el cromosoma bacteriano, una molécula mucho más grande. A partir de un cultivo de E. coli, se puede separar suficiente ADN plasmídico para caracterizarlo. Una vez que se dispuso de genes individuales purificados, el escenario estaba listo para la siguiente etapa.

Walter Gilbert, en la Universidad de Harvard, y Frederic Sanger, en Cambridge, Inglaterra, se dieron a la tarea de desarrollar técnicas para determinar la más importante característica del ADN, su secuencia de bases. Pocos años después lograron su objetivo, y compartieron el Premio Nobel de química en 1980. Las técnicas de secuenciación actuales (véase el recuadro II.5) son usadas abundantemente e, inclusive, han sido automatizadas. A la fecha, genes de las más diversas fuentes han sido secuenciados, acumulando una base de datos que representa cientos de millones de nucleótidos. Esta cantidad crece a paso inexorable y se espera que lo haga cada vez más aceleradamente (véase la sección sobre la secuenciación del genoma humano, en el capítulo IV).

RECUADRO II. 5. Procedimiento para obtener la secuencia del ADN

A partir de un gene donado se pueden seguir hoy en día diversos procedimientos para deducir su secuencia nucleotídica. Hasta ahora se han empleado casi exclusivamente, los métodos de Maxam-Gilbert y el de Sanger; los cuales tienen en común generar una colección de fragmentos con un extremo común, y el otro termina en una de las cuatro bases. En el método de Maxam-Gilbert se utilizan reacciones químicas específicas para lograr este objetivo. En el método de Sanger se emplean reacciones enzimáticas.

En la figura se ilustra el método enzimático. A partir de un oligo marcado se inicia una reacción de replicación in vitro. Esta reacción procede hasta encontrar un nucleótido terminador, que no permite que la cadena replicada siga creciendo. Se efectúan cuatro reacciones, una para cada base de ADN que contiene el nucleótido terminador correspondiente, y se termina con cuatro colecciones de fragmentos marcados, cada una constituida por fragmentos que terminan en A, G, C o T, respectivamente.

El análisis del tamaño de estos fragmentos, mediante electroforesis en gel, revela de inmediato un patrón de bandas, que corresponde directamente a la secuencia que se encuentra enfrente del oligo iniciador.

En el capítulo IV, "Nuevas técnicas de secuenciación" p. 101, se relatan nuevos métodos que prometen revolucionar la técnica de secuenciación del ADN.





LA REACCIÓN EN CADENA DE POLIMERASA

Otro de los avances metodológicos más importantes es la reacción en cadena de polimerasa (PCR, siglas en ingles polymerase chain reaction). Este procedimiento constituye un ejemplo sumamente interesante de la importancia de la metodología en el desarrollo científico. También ilustra la manera como ocurren muchos de los descubrimientos: a partir de intuiciones que integran conocimientos que han estado disponibles durante cierto tiempo.

En efecto hacia 1985 —con el ADN recombinante ya plenamente establecido como una técnica aplicada rutinariamente por cientos de laboratorios en el mundo—, Kary Mullis, quien a la sazón trabajaba para la compañía Cetus, en San Francisco, California, tuvo una súbita inspiración mientras manejaba su auto y se dirigía hacia una cabaña en la que se disponía descansar el fin de semana. Como muchos otros investigadores, Mullis se encontraba desarrollando aplicaciones para los oligos sintéticos. Concibió entonces la idea de que combinando el uso de los oligos con varios ciclos de replicación in vitro se podía amplificar, es decir; obtener en gran cantidad, un segmento de ADN específico (por ejemplo, un gene en particular).

Pero veamos con más calma en qué consiste la idea (figura II.1). La enzima ADN polimerasa participa en la replicación del ADN (recuadro I.I). Para convertir una molécula de ADN de doble cadena en dos moléculas idénticas, la enzima requiere que las cadenas de la molécula inicial se separen, para así tener un molde disponible. Además, la enzima requiere un segmento de ADN con un extremo libre, que sirve para cebar o iniciar la reacción de replicación y los nucleótidos precursores. Si se colocan estos sustratos en un tubo de ensayo, la ADN polimerasa puede incorporar uno por uno los nucleótidos correspondientes, es decir, frente a una A en el molde, adicionará T en la cadena creciente; frente a G, C, etc. En realidad, éste concepto era perfectamente conocido y aplicado desde mucho antes de que se concibiera la técnica de la PCR. Lo original de la idea de la concepción de Mullis fue pensar qué sucedería si se aplica este procedimiento en ciclos sucesivos, en una reacción en cadena. Los oligos sintéticos, en virtud de su propiedad de hibridación de los ácidos nucleicos, definen los puntos de partida para el copiado de las cadenas de ADN. Si se colocan dos oligos cuya secuencia define los extremos de un segmento determinado de ADN, se hacen hibridar con las hebras del molde, previamente separadas, y se someten a una reacción con ADN polimerasa, de lo que resultarán dos moléculas cuyos extremos están definidos por los oligos y que corren en sentido opuesto. Las cadenas resultantes son complementarias entre si: existen ahora el doble de moléculas con la secuencia que demarcan los oligos. ¿Qué pasa si ese proceso se repite, cíclicamente? ¡El resultado es lo que se denomina un crecimiento exponencial! En el siguiente ciclo de separación de cadenas, hibridación con los oligos y reacción con ADN polimerasa, se obtendrán cuatro moléculas de la región entre los oligos. Los ciclos subsiguientes generarán 8, 16, 32, 64 moléculas, y así sucesivamente. Para comprender mejor las implicaciones de un proceso exponencial, recordemos la fábula del inventor del ajedrez. Se cuenta que un rey quedó tan asombrado de lo interesante que resultaba el juego, que ofreció recompensar al súbdito que se lo enseñó. Este le pidió "solamente" un grano de trigo por el primer cuadro del tablero, dos por el segundo, cuatro por el tercero, y así sucesivamente. El rey, sin hacer cálculos, accedió de buen grado. Por desgracia para el rey, todas las cosechas de trigo del mundo fueron insuficientes para completar la solicitud del inteligente vasallo. Sólo por el cuadro 30 se requerían 1 073 741 824 granos de trigo.





Así, con la técnica de la PCR se pueden amplificar segmentos específicos de ADN para crear muchos millones de moléculas a partir de unas cuantas, o incluso de una sola. Para esto se requirió adaptar el concepto básico haciendo uso de ADN polimerasas provenientes de microorganismos termófilos (que crecen a temperaturas de más de 70 grados en manantiales termales). De otra manera, la enzima se inactivaba cada ciclo, pues se requiere aplicar calor para separar las moléculas del ADN molde. Hoy día un ciclo puede tomar cinco minutos o menos, por lo que el proceso de amplificación se lleva a cabo en menos de dos horas (normalmente 20 ó 30 ciclos son suficientes).

Nuevamente nos encontramos ante un concepto bellamente simple. Lo sorprendente es que los elementos técnicos y conceptuales necesarios para esta invención estuvieron disponibles por varios años antes de que Kary Mullis los desarrollara.

La aplicación de la PCR, en sí misma, constituye un avance revolucionario en la investigación biológica moderna. Uno de los más espectaculares ejemplos que ilustran la potencia de esta técnica es el rescate y secuenciación de ADN prehistórico (realidad que sustenta la historia de ciencia ficción Parque Jurásico de Michael Crichton). (En capítulos siguientes consideraremos otras aplicaciones en las que la PCR desempeña un papel indispensable.)

OTRAS TÉCNICAS IMPORTANTES EN BIOLOGÍA EXPERIMENTAL MODERNA

En los capítulos que siguen hablaremos de las muchas maneras en que los investigadores aplican métodos específicos para lograr sus objetivos de aislar, caracterizar y manipular genes y sus productos. Cada problema requiere echar mano de las técnicas más modernas y avanzadas. Efectivamente, en la práctica, la labor de un científico está fuertemente condicionada por las técnicas experimentales de que dispone y puede manejar.

Así, entre el gran número de técnicas que no mencionamos en este capitulo, algunas harán su aparición cuando se describan aplicaciones especificas. Observaremos cómo se utiliza reiteradamente la propiedad de reconocimiento molecular, de asociarse específicamente tras moléculas. ¡Realmente el científico moderno tiene las herramientas para encontrar una aguja en un pajar! Trataremos de resaltar también cómo los avances de tecnologías que provienen de disciplinas diferentes son incorporadas ávidamente por los biólogos. Su uso les permite prosperar en las respuestas a las preguntas que se están formulando.  

InicioAnteriorPrevioSiguiente