XVIII. EL ÁTOMO DE BOHR
E
L SIGUIENTE
salto en la historia de los cuantos lo dio Niels Bohr en 1911 al postular la idea del salto cuántico para explicar por qué los espectros atómicos existen. La historia del modelo atómico de Bohr es como sigue.J. J. Thomson y su discípulo Ernest Rutherford descubrieron, respectivamente, el electrón y el núcleo de los átomos. Con estos ingredientes, se propuso un modelo planetario y clásico para el átomo, que sería un pequeño sistema solar, con el núcleo en el papel del Sol y una nube de electrones circundándolo, como si fueran los planetas. Tal modelo conduce, por lo menos, a dos consecuencias desagradables.
La primera de esas consecuencias es verdaderamente catastrófica: el modelo planetario y la física clásica predicen que los átomos son inestables. En efecto, como ya mencionamos, un electrón cargado que da vueltas alrededor del núcleo emite ondas electromagnéticas, cuya frecuencia es la del movimiento del electrón al recorrer su órbita y cuya energía proviene de la energía mecánica de la partícula. El electrón pierde, pues, su energía en forma continua y cae irremisiblemente al núcleo. La teoría electromagnética de Maxwell predice que, en un tiempo pequeñísimo, la nube electrónica y con ella el átomo habría desaparecido. La materia, de acuerdo a la física clásica, sería inestable.
La segunda consecuencia del modelo planetario clásico es igualmente desagradable y, como la primera, también inevitable si aceptamos las leyes de Newton y de Maxwell. Cuando el electrón radia y pierde su energía mecánica, cada vez se mueve más despacio, recorriendo su órbita con una frecuencia que disminuye continuamente. Por ello emitiría, según la teoría clásica, radiación electromagnética de todas las frecuencias y no luz con un espectro discreto. Los espectros de Kirchhoff y la serie de Balmer constituyen un enigma que la física clásica no puede resolver.
Al terminar sus estudios de doctorado en Copenhague, Bohr decide estudiar en Inglaterra, en el Cavendish, bajo la dirección de J. J. Thomson. Muy pronto, Bohr propone que la mecánica clásica no funciona dentro del átomo, sino que éste sólo puede existir en un conjunto discreto de estados estacionarios con energías E0, E1,E2 ..... .; cuando un electrón se encuentra en uno de ellos, no puede emitir ni absorber radiación; estos procesos se dan cuando el átomo pasa de uno de esos estados estacionarios a otros y la frecuencia de la luz necesaria obedece a la ecuación
es decir, sólo radia aquellos cuantos cuya frecuencia es tal que se conserva la energía.
Los grandes físicos de la vieja generación nuestro ya conocido Rayleigh y el mismo maestro de Bohr, J. J. Thomson se opusieron al nuevo modelo del joven danés. Por esta razón, entre otras, Bohr deja el Cavendish y va a trabajar con Rutherford en Manchester, donde en 1913 completa el nuevo esquema atómico, acorde con las ideas cuánticas de Planck y Einstein, pero violentamente opuesto a la mecánica de Newton.
Con su modelo, Bohr pudo explicar la serie de Balmer y aun predecir lo que ocurriría al bombardear átomos con electrones de baja energía: si ésta fuera menor que la diferencia E1 - E0, es decir, la mínima energía requerida para excitar el átomo, el electrón no podría comunicar a éste excitación alguna. Esta concepción, ajena por completo a las ideas clásicas cuando se aplican al choque entre partículas, fue comprobada por los científicos alemanes James Franck y Gustav Hertz (este último sobrino de Rudolf Hertz), quienes alrededor de 1920 bombardearon gases y vapores con electrones de diferentes energías. Cuando la energía no es suficiente para que un cuanto completo se absorba, el electrón rebota elásticamente y no se emite luz. El modelo atómico de Bohr, aunque no es muy satisfactorio desde el punto de vista teórico, recibió así un fuerte impulso.
![]()