II. NIELS BOHR: CONTRARIA SUNT COMPLEMENTA

MARIANO BAUER

EL ACOTAMIENTO dado al título de esta Primera Parte no queda bien claro para este expositor. ¿Se debe hablar de toda la física en ese lapso o sólo de lo que interesaba a Bohr, esto es, lo que constituía el objeto de su atención? Al hablar del entorno intelectual, físico e histórico en que se desenvuelve un individuo, puede verse que la mayor parte de lo que acontece a su alrededor le es irrelevante o inconsecuente. Cada persona establece su propio "cono de luz" en cuanto a los "eventos" que realmente influyen en sus acciones o en su manera de pensar. No seria remoto —creo yo— que la afición de Bohr por el cine, en particular las películas de vaqueros, tuviera más que ver en la estructuración del principio de complementariedad que muchos de los artículos científicos que pasaron por sus manos. Parece entonces más apropiado considerar primero cuáles han sido las contribuciones esenciales de Bohr al desarrollo de la física. Y de ahí establecer cuáles remontan sus orígenes al periodo señalado, dilucidando las conexiones.

La fecha de 1918 corresponde a la publicación de su artículo "Sobre la constitución de los átomos y las moléculas" que constituye el primer enunciado del llamado "átomo de Bohr". Él mismo advierte: "Debe aclararse que esta teoría no pretende explicar fenómenos en el sentido en que la palabra 'explicación' ha sido usada anteriormente en la física. Lo que se pretende es conjuntar varios fenómenos que aparentan no tener conexión y mostrar que sí están conectados." El distinguido físico Otto Stern (del experimento Stern-Gerlach) confesó alguna vez haber dicho entonces: "Si esas vaciladas de Bohr resultan ser ciertas, me retiro de la física."

A esa presentación modesta y a esta reacción visceral puede contrastarse lo que opinó Einstein años más tarde (1951), al recordar las graves contradicciones que se planteaban entre la mecánica y la electrodinámica clásicas, y lo que se apreciaba en las observaciones de la absorción y emisión de radiación electromagnética por la materia:

Todos mis intentos de adaptar los fundamentos teóricos de la física a este nuevo tipo de conocimiento fracasaron completamente, Era como si nos estuvieran moviendo el piso, sin que se pudiera encontrar algo de tierra firme sobre la cual construir. Que estos cimientos inseguros y contradictorios le fueran suficientes, aun a alguien de la sensibilidad e instinto únicos de Bohr para descubrir las principales leyes de las líneas espectrales... me pareció un milagro —y todavía hoy me lo sigue pareciendo—. He aquí la forma máxima de musicalidad en la esfera del pensamiento.


En lo anterior está señalado ya el ámbito de "las paradojas que Bohr enfrentó", esto es, los fenómenos radiactivos. Pero la explicación, ya en el sentido usual, de estas paradojas y otras más que fueron surgiendo es a lo que se aboca Bohr después de los enunciados iniciales de su trabajo de 1915. Es en este proyecto de "explicación" donde surgen, entre muchos trabajos específicos, lo que hoy conocemos como "el principio de correspondencia" y "el principio de complementariedad" de Bohr, naturalmente. El primero es herramienta y guía en la ardua labor emprendida por tantos científicos dedicados a desentrañar los misterios de la naturaleza a nivel microscópico, y que lleva finalmente a estructurar la mecánica cuántica. El segundo, que raya ya en lo filosófico, es el que nos permite, por lo menos, habituarnos a esta mecánica cuántica más que intentar comprenderla, como recomendaba a sus estudiantes el eminente físico soviético Lev Landau.

Pero volvamos al año de 1900. Es el del descubrimiento del cuanto de acción por Planck, lo cual, naturalmente, no afectó a Bohr quien apenas estaba entrando a la preparatoria, donde destacó tanto por buen estudiante como por buen futbolista. Lo que le enseñan es la física bien establecida y no cosas esotéricas, que por cierto fueron ignoradas y desestimadas por la academia durante algunos años todavía.

En ese momento reina Newton —apoyado por Lagrange, Hamilton y otros— y se está afianzando Maxwell a su lado. Nuestra apreciación de la naturaleza está claramente fincada en el concepto de materia ponderable —sólidos, líquidos y gases— por un lado y en el de radiación electromagnética —la luz—, por otro.

La ascendencia de la mecánica de Newton se basa en el éxito que tiene su aplicación sistemática a fenómenos muy distintos de los que la originaron. Maravilla el que con base en ella se empiece a dar una fundamentación microscópica a la termodinámica, esa bella y depurada rama de la física que ocupaba nicho aparte. Esta fundamentación la constituye la llamada teoría cinética de los gases, en la cual éstos son considerados como conjuntos de partículas moviéndose caóticamente y chocando unas con otras y con la pared del recipiente, de acuerdo con las leyes de Newton. Otros aspectos de la dinámica de los sólidos y de los fluidos, es decir, líquidos y gases, también se explicaban de acuerdo con la teoría newtoniana, aun cuando no requerían necesariamente de un modelo de partículas. Bastaba considerar una distribución continua de masa y subdividirla en elementos más o menos pequeños. Variando los grados de rigidez y/o de compresibilidad se conseguía una descripción unificada de las leyes de movimientos de los cuerpos sólidos por un lado y de las que gobiernan muchos de los aspectos de los flujos de líquidos y gases por otro (una clara excepción, por ejemplo, es el problema de la turbulencia, que a la fecha todavía no está resuelto; más aún, su planteamiento trasciende ciertamente el esquema newtoniano).

Pero además también está la descripción de la propagación del sonido a través de medios materiales, o de las ondas en un estanque. En estos casos, una acción externa sobre un sector del medio material origina un cambio de densidad o un desplazamiento de masa locales, que al restituirse a su condición inicial a su vez provocan lo mismo en el sector adjunto, y éste a su vez en el siguiente y así sucesivamente. Tenemos transferencia de energía sin transporte de masa. Cuando la acción externa se repite continua y periódicamente, generamos en el medio lo que llamamos una onda. Es característica fundamental de este tipo de fenómeno el que, al incidir en un lugar dos perturbaciones originadas en sitios distintos, éstas pueden o bien reforzarse o bien cancelarse, total o parcialmente; hablamos entonces de interferencia de ondas.

Lo anterior explica por qué se buscaba también un modelo mecánico y un medio apropiado —el éter o medio luminífero— para explicar la propagación de la luz.

En efecto, durante todo el siglo XIX se había ido afirmando el carácter ondulatorio de los fenómenos ópticos, descartándose el modelo corpuscular propuesto por Newton que no podía explicar manifestaciones como la interferencia y la difracción de la luz y otros más. Este proceso culmina con la identificación de la luz como onda electromagnética, en la síntesis que realiza Maxwell de los fenómenos eléctricos y magnéticos conocidos. De la observación de que corrientes eléctricas esto es, cargas eléctricas en movimiento, generan campos magnéticos en su vecindad y de que campos magnéticos variables inducen corrientes eléctricas en los materiales conductores, o sea campos eléctricos que ponen en movimiento las cargas, Maxwell intuye genialmente que esta concatenación de campos eléctricos y magnéticos ocurre aun fuera de la materia ponderable donde se encuentran las cargas eléctricas, para lo cual también propone la existencia de un "medio magnético". La ecuación que satisface esta concatenación es precisamente de la forma llamada ecuación de ondas y la velocidad de propagación del fenómeno es una constante, cuyo valor coincide con el de la propagación de la luz en el vacío. La generación de radiación electromagnética por cargas eléctricas en movimiento queda plenamente confirmada con los experimentos de Hertz, que incluyen el proceso complementario de inducción de corrientes eléctricas en conductores por la radiación incidente en ellos. Se abre la era del radio, las telecomunicaciones, la radioastronomía, etcétera.

A fines del siglo pasado impera, entonces, la sensación de que la tarea está prácticamente terminada en cuanto a la comprensión de la estructura fundamental de la naturaleza: materia con masa y carga eléctrica por un lado y radiación electromagnética por otro; todo regido por la mecánica racional y la electrodinámica. La comprensión detallada de un fenómeno particular es sólo cuestión de aplicación sistemática de la teoría, con mayor o menor grado de dificultad. Lord Kelvin, en 1900, habla de un cielo despejado, si acaso con un par de nubecillas en la lejanía, que seguramente desaparecerán en breve. Pero esas nubecillas se convierten poco a poco en negros nubarrones.

El éter, o medio luminífero, y el medio magnético han quedado fundidos en uno solo. Pero su concepción como medio mecánico, con su gran peculiaridad de permear todos los cuerpos ponderables aparte de llenar el vacío, crea cada vez más dificultades a la teoría misma que sostiene con su atributo especial. Una consecuencia tal como que la velocidad de la onda debe ser afectada por el movimiento del medio en que se transmite, como pasa con las ondas sonoras, parece no cumplirse en el caso de la luz. Sólo la revolución de pensamiento que constituye la teoría de la relatividad de Einstein logra disolver este cúmulo.

En otra esfera, si las ondas de Hertz —como se les llamó entonces— se emiten y se absorben en cabal acuerdo con las leyes de Maxwell, otros fenómenos de emisión y absorción de luz por la materia parecen ignorarlas cabalmente. Por un lado cada elemento químico revela un patrón propio e inalterable de comportamiento, seleccionando frecuencias particulares de emisión y absorción. Por otro, la relación del espectro de frecuencias de emisión de cuerpos macroscópicos en función de la temperatura, revela características universales en franco desacuerdo con las predicciones de la teoría clásica, algunas tan descabelladas por cierto, como que la energía radiada sería infinita: esto se conoce como la "catástrofe infrarroja" en la teoría de la radiación de cuerpo negro. El esfuerzo de muchos físicos y químicos que recurren a explicaciones más y más complejas en su afán de salvaguardar el dogma clásico, aporta sin duda nuevos conocimientos. Pero la situación se complica cada vez más, al punto de requerir tratamiento de nudo gordiano; el cual es proporcionado por Planck y Einstein

En 1900, Planck muestra que la congruencia con la observación, en el caso de radiación de cuerpo negro, se logra si se acepta que la materia emite o absorbe energía electromagnética en "cuantos" de energía proporcionales a la frecuencia. La constante universal de proporcionalidad es la que conocemos como constante de Planck. Esto constituye una franca rebeldía contra los dictados de Maxwell.

Cinco años más tarde, en 1905, Einstein refuerza la osadía de Planck al señalar que su hipótesis permite comprender las características inesperadas del efecto fotoeléctrico, fenómeno que consiste en la liberación de electrones por un metal cuando incide sobre el la radiación electromagnética. Einstein inicia aquí sus trabajos sobre las hipótesis de Planck que le llevarán a concluir que hay que considerar a la radiación electromagnética, nuevamente, como un conjunto de corpúsculos, por lo menos en algunos fenómenos. Dado que no se pueden pasar por alto todos los fenómenos luminosos que tienen carácter ondulatorio, irrumpe así en la física la paradoja de la dualidad onda-corpúsculo en la descripción de la luz, paradoja que más tarde se hará extensiva a la materia.

Paralelamente a lo anterior se desarrollan toda una serie de experimentos que ahondan en la estructura fundamental de la materia. El descubrimiento de la radiactividad natural en 1887 por Becquerel, evidencia que los "átomos" de los químicos son a su vez sistemas compuestos. En 1897, Thompson identifica al electrón, partícula cargada negativamente, como una de los componentes. Con base en brillantes experimentos, Rutherford concluye en 1911 que la carga positiva que el átomo debe tener para neutralizar la carga negativa de los electrones, se encuentra concentrada en un muy pequeño y muy pesado núcleo central. Surgen el modelo planetario del átomo y una nueva paradoja.

En efecto, de acuerdo con la electrodinámica de Maxwell, un electrón en órbita debe emitir radiación continuamente e ir perdiendo energía hasta caer al núcleo. Lo cual ciertamente no ocurre, o no estaríamos aquí. Por otra parte, también existe una permanencia comprobada de las propiedades de los átomos. Una especie atómica nunca cambia intrínsecamente, en forma aislada de los procesos en que participe. El átomo de hidrógeno, por ejemplo, no ha variado de tamaño ni modificado sus frecuencias de emisión y absorción cuando, después de haber integrado infinidad de compuestos químicos, se le vuelve a aislar. Sus aventuras no le dejan huella. Esta es la problemática a que se enfrenta Bohr cuando en 1912 es invitado por Rutherford a integrarse al joven y entusiasta grupo de físicos reunido en su laboratorio, y donde, aun siendo teórico, es bien recibido. Se cuenta que, habiendo alguien preguntado a Rutherford el porqué acordaba a Bohr un trato inusitado en él hacia los teóricos, respondió el gran físico experimental: "Es que Bohr es distinto: juega futbol."

Reflexionando sobre una solución a los problemas que plantea el modelo atómico de Rutherford, Bohr intuye que la restricción a absorción y emisión por "cuantos de energía" propuesta por Planck y Einstein puede ser la clave. Por lo pronto, si la energía que se libera al formarse el átomo debe corresponder a "cuantos de energía", la energía final del proceso o sea la del "estado permanente del sistema atómico" —como él lo llama— no puede ser cualquiera. Se convence de que la idea es correcta cuando —y esto es central en su artículo de 1913— la introducción de la constante de Planck junto con la masa y la carga del electrón en el cálculo de la órbita, le permite establecer una dimensión natural y por demás correcta para el átomo.

Cuando está concretando estas ideas y escribiendo el artículo, ya de vuelta en Copenhague, un colega le muestra la fórmula de Balmer para las frecuencias de las emisiones radiactivas del átomo de hidrógeno, fórmula publicada el año mismo en que nació Bohr. Al centrarse en las transiciones radiactivas, su perspectiva del problema se modifica, ampliándose considerablemente. El "estado permanente" aparece ahora sólo como el de menor energía entre muchos estados estacionarios o casi permanentes, del átomo. Enuncia entonces los postulados siguientes, de trascendencia histórica en la física moderna:

I. Que el equilibrio dinámico de los sistemas en los estados estacionarios puede discutirse con ayuda de la mecánica usual, mientras que el paso de los sistemas entre estados estacionarios diferentes no puede ser tratado en esta base.

II. Que este último proceso es seguido por la emisión de una radiación homogénea, para la cual la relación entre la frecuencia y la cantidad de energía emitidas es la dada por la teoría de Planck.


Puede reconocerse en estas afirmaciones la mezcla de audacia y de cautela que quienes lo conocieron dicen que era característica de Bohr. Y también ilustra lo difícil que es librarse de la autoridad del conocimiento adquirido.

Sostiene la validez de la mecánica de Newton y sólo suspende temporalmente la aplicación de la electrodinámica de Maxwell. Esta queda sustituida por la hipótesis de Planck, lo cual le permite destacar ciertas órbitas como las posibles trayectorias para el electrón en el átomo de hidrógeno. La diferencia de energías de estos movimientos, calculada con la mecánica clásica y transformada a frecuencia por la fórmula de Planck, reproduce sin más la fórmula de Balmer, inclusive cuantitativamente y ñsin parámetros ajustables!

No le debió ser fácil a Bohr romper con Maxwell. Podemos citar al físico Oskar Klein que nos dice. "Recuerdo bien la gran admiración de Bohr por Einstein... Bohr, sin embargo, no podía acostumbrarse al concepto de 'cuantos de luz' de Einstein. . . Las objeciones de Bohr se originaban en su completa familiaridad con la teoría ondulatoria de la luz y, cuando se mencionaban estos casos (fenómenos con características corpusculares), acostumbraba subrayar la fantástica exactitud e integración de esta teoría en la explicación de muchos experimentos de propagación de la luz."

En la conferencia ante la Sociedad Danesa de Física en que expone por primera vez sus ideas, Bohr concluye en la forma siguiente: "Antes de terminar sólo quiero decir que espero haberme expresado con suficiente claridad, para que hayan ustedes apreciado a qué grado estas consideraciones chocan con el asombrosamente coherente grupo de conceptos que con propiedad reciben la designación de teoría clásica del electromagnetismo. Por otro lado, he tratado de comunicarles la impresión de que, haciendo hincapié en este conflicto, puede ser posible también, en el curso del tiempo, descubrir una cierta coherencia en las ideas nuevas."

Bohr acepta que debe haber cambios pero al mismo tiempo sabe que no se puede desechar, ni está dispuesto a hacerlo, todo lo anterior. Debe haber una coherencia entre lo nuevo y lo ya establecido. Bohr no elucida las paradojas en el sentido de dar una explicación dentro de las teorías establecidas; lo que hace es señalar, con base en una intuición y un análisis brillantes, que hay que introducir elementos adicionales en nuestro esquema conceptual para poder tomar en cuenta los nuevos conocimientos. Y que el esquema ampliado, todavía por construirse, debe ser tal que corresponda al esquema clásico en todos los fenómenos en que éste ha demostrado su validez. Esta afirmación, conocida como el "principio de correspondencia", sirve de guía en la tarea —que se inicia en 1913— de encontrar la extensión apropiada.

Cuando esta tarea queda concluida, por lo menos en sus aspectos fundamentales, en 1927, se ha aceptado la necesidad de modificar no sólo la electrodinámica sino la mecánica misma, contrariamente a la idea original de Bohr. Han nacido la mecánica y la electrodinámica cuánticas.

Bohr participa como investigador y, sobre todo, como orquestador de los esfuerzos de los muchos investigadores que acuden a empaparse en la atmósfera del Instituto que ha creado en Copenhague. Cuando la paradoja de la dualidad onda-corpúsculo de los fenómenos electromagnéticos, que fue surgiendo en los años de 1900 a 1918, se extiende al ámbito de la materia en vez de desaparecer, es Bohr quien promulga la aceptación final de una nueva concepción de nuestro conocimiento de la naturaleza.

Sin dar un enunciado específico, Bohr estructura en diversas conferencias y escritos lo que hoy se conoce como "principio de complementariedad", que nos pide aceptar que la realidad física puede tener facetas en apariencia incompatibles pero en realidad complementarias, ya que no se pueden hacer evidentes simultáneamente. El Contraria sunt complementa inscrito en su escudo de armas, testifica sobre su convicción al respecto, surgida sin duda alguna de reflexiones profundas. Con referencia a lo que dije al principio de esta charla, recordemos aquí que, en la narración de una historia en una película, los diversos acontecimientos simultáneos que la integran deben necesariamente aparecer uno después de otro en la pantalla. En las películas del oeste, del cine mudo, el cambio de escena se anunciaba con un cartel que decía: "Mientras tanto, allá en la hacienda..." El sugerir que la afición al cine de Bohr haya podido influir en el enunciado de un principio tan profundo como el de complementariedad puede parecer irreverente. Sírvame, para atenuar la impresión, repetir una experiencia que relata el conocido físico Victor Weisskopff. Habiendo llegado al famoso Instituto de Copenhague para continuar su formación post-doctoral, le pareció a Weisskopff que el ambiente jovial e informal que imperaba no era lo apropiado a las cuestiones fundamentales y profundas que se debatían. Al comentárselo, con todo respeto, al director del Instituto, el profesor Niels Bohr, éste le respondió: "Mire, hay cosas tan serias, que realmente lo único que se puede hacer es bromear sobre ellas." Y quien sabe si, entre broma y broma...

ÍndiceAnteriorPrevioSiguiente