III. LA ÓPTICA, LA ELECTRICIDAD Y EL MAGNETISMO
T
ODAS
las civilizaciones desarrollaron algún tipo de espejo para ver la reflexión de su imagen. Pudo ser un recipiente con agua o una piedra pulida. Con el desarrollo de la metalurgia se pudieron fabricar espejos de metal pulido que producían una imagen mucho más brillante. En Egipto los espejos eran artículos comunes en cierto sector de la población.El griego Epicuro conocía la ley de la reflexión de la luz, como lo expresa Lucrecio en su libro De la naturaleza de las cosas donde se dice claramente que el ángulo de incidencia es igual al ángulo de reflexión. También habla de la refracción de la luz, indicando que una varilla, parcialmente sumergida en el agua, se ve quebrada, pero no ofrece una explicación semejante a la que dan la ley de la refracción, la ley de los senos, o la ley de Snell.
En la Antigñedad muchas personas pensaban que de los ojos se proyectaba algo que palpaba los objetos para verlos. Epicuro hace notar que es de los objetos de donde brotan partículas que hieren los ojos e impresionan la vista.
Abu Alí Alhazen (965-1039). Físico árabe nacido en Irak. Se le considera uno de los creadores de la óptica. Inventó la cámara oscura, que consiste en un cuarto o cajón oscuro que tiene en una de sus paredes un pequeño orificio. En la pared opuesta se forma una imagen invertida de los objetos exteriores. Este aparato es el antecesor de la moderna cámara fotográfica.
Construyó equipos parabólicos como los que ahora se usan en los modernos telescopios y estudió sus propiedades de enfoque.
Fabricó lentes y estudió el enfoque que producen. Los conocimientos de óptica en tiempos de Alhazen se muestran en la figura 20. La tradición cuenta que Arquímedes defendió su ciudad natal, Siracusa, empleando espejos cóncavos de gran radio de curvatura, para concentrar la luz del Sol en los barcos enemigos y quemarlos. En la figura se observa también que eran conocidas la reflexión y la refracción de la luz: se ve un hombre frente a un espejo y a otro dentro de un estanque, al que se le ven las piernas quebradas. El arco iris entre las nubes es igualmente observable. Leonardo da Vinci, conociendo la tradición de Arquímedes, diseñó por lo menos siete máquinas para tallar espejos de gran tamaño y radio de curvatura, pero probablemente nunca construyó una de estas máquinas (Figura 21). En la actualidad, para concentrar la luz solar en una pequeña zona se emplean muchos espejos planos pequeños, orientados en la dirección deseada.
Figura 20. Conocimientos de óptica en tiempos de Alhazen (año 1000). Pueden verse en el esquema espejos cóncavos que concentran la luz solar, espejos planos, el arco iris y la refracción de la luz, al observar las piernas del hombre en el estanque.
Figura 21. Uno de los diseños de Leonardo da Vinci: aparato para tallar espejos esféricos de gran diámetro y radio de curvatura.
Desde el siglo XIV se desarrolló en Europa la construcción de lentes para corregir defectos de la vista, como puede observarse en diversas pinturas de la época. Cuenta la leyenda que en una tienda de lentes, en Holanda, un cliente comenzó a mirar a través de dos lentes, puestas una enfrente de la otra y observó que los objetos se veían más cerca de lo que en realidad se encontraban, se había inventado así el telescopio.
EL DESARROLLO DE LA ÓPTICA COMO CIENCIA
La noticia del descubrimiento del telescopio llegó a Galileo en 1609, y seis meses después había diseñado y construido un telescopio ideado por él. Lo más importante es que, por primera vez, empleó este telescopio y los otros que construyó posteriormente, a la investigación de la mecánica celeste.
Observó que la Luna tenía montañas, y el Sol manchas que cambiaban con el tiempo, de donde dedujo que giraba alrededor de su eje, con periodo de 27 días. Al observar las estrellas vio que permanecían puntuales en el telescopio, aun las más brillantes, mientras que los planetas se veían como pequeñas esferas. La conclusión de Galileo fue que las estrellas debían estar mucho más lejanas que los planetas y que el Universo podía ser indefinidamente grande. Descubrió cuatro satélites de Júpiter.
Galileo fue el primero en proponer un método para medir la velocidad de la luz, que consistía en que dos hombres con linternas, subidos en dos montañas próximas, al destapar el primero su linterna, y ver la luz el segundo, éste destaparía la suya y el primero mediría el tiempo transcurrido desde que destapó su linterna hasta que observó la luz del otro. La velocidad de la luz se encontraría dividiendo el doble de la distancia entre las montañas, entre el tiempo empleado. Este método no dio resultado porque la luz se mueve muy aprisa y el tiempo de respuesta de los observadores es muy lento. Dos siglos después, el francés Fizeau empleó este método con éxito, sustituyendo al segundo observador con un espejo y dotando al primero con una rueda dentada por la que pasaba la luz de ida y de vuelta. Al ir aumentando la velocidad de la rueda, había un momento en que la luz que pasaba entre dos dientes, al regresar chocaba con el diente próximo.
Willebrord Snell (1591-1626). Físico holandés. Descubrió la ley de la refracción de la luz. En un triángulo rectángulo, o sea el que tiene un ángulo recto, el seno de uno de los ángulos agudos es el cociente que resulta de dividir el cateto opuesto al ángulo, entre la hipotenusa.
Cuando la luz pasa de un medio a otro, por ejemplo del aire al vidrio o al agua, se dice que refracta. Se llama ángulo de incidencia al formado por el rayo incidente con la normal a la superficie de separación entre los dos medios y ángulo de refracción al formado entre el rayo refractado y la normal.
La ley de Snell nos dice que para dos medios dados, el seno del ángulo de incidencia, entre el seno del ángulo de refracción, es una constante, y que el rayo incidente, la normal y el rayo refractado se encuentran en un mismo plano.
Esta ley es fundamental para diseñar lentes y aparatos ópticos.
Un rayo luminoso al atravesar un vidrio de caras planas y paralelas después de refractarse dos veces sale paralelo al rayo incidente (Figura 22).
Figura 22. Reflexión y refracción de un rayo luminoso al atravesar un vidrio plano de caras paralelas, de acuerdo con la ley de Snell.
Descartes también descubrió esta ley, pero publicó sus resultados después de Snell.
Marcelo Malpighi (1628-1694). Fisiólogo italiano. Como una consecuencia del invento del telescopio por Galileo, Malpighi consideró que podía diseñarse una combinación de lentes que aumentara el tamaño de los objetos pequeños. Así llegó a inventar el microscopio y la microscopía que se desarrollaron ampliamente a mediados del siglo XVII.
En 1650 estudió el tejido de los pulmones de las ranas y mostró que la sangre fluye a través de un complejo sistema de vasos y conductos donde la sangre se oxigena.
Malpighi y sus seguidores mostraron que el mundo de lo infinitesimal es tan importante como el mundo macroscópico o la astronomía.
Anton van Leeuwenhoek (1632-1723). Perfeccionó el microscopio y fue el primero en describir los espermatozoides. En 1667 descubrió los primeros animales unicelulares llamados protozoarios y en 1683 describe a las bacterias. Encontró que las moscas tienen pequeños parásitos.
En su vida talló 419 lentes que empleó en los microscopios que construyó. Sus microscopios tuvieron amplificaciones hasta de doscientos y su construcción fue simple, consistía en una sola lente muy pequeña, del tamaño de una cabeza de alfiler, tallada con gran perfección. Por ella Leeuwenhoek observó lo que ningún otro hombre en su tiempo pudo ver.
EL DESARROLLO DE LA ÓPTICA MODERNA
Cristián Huygens perfeccionó el telescopio y así descubrió nuevas maravillas en el firmamento. La gran nebulosa de Orión, anillos de Saturno y un satélite de este planeta, al que Huygens llamó Titán. Fue el primero que estimó la enorme distancia a que se encuentran las estrellas. Calculó la distancia a la que debería llevarse al Sol para que se viera con el brillo de la estrella Sirio, y a esa distancia supuso que se encontraba esa estrella. En realidad, Sirio es mucho mayor y más brillante que el Sol, por lo que la distancia estimada para Sirio resultó veinte veces menor que la real.
La primera teoría sobre la naturaleza de la luz la formuló Huygens, al suponer que era un fenómeno ondulatorio, similar al de las ondas sonoras o las ondas en el agua, explicando las leyes de la reflexión y de la refracción de la luz, al suponer que la luz viaja con menor velocidad en el agua o en el vidrio que en el vacío o en el aire. Esta teoría, con ciertos cambios, es válida hasta la fecha.
Issac Newton impulsó notablemente la óptica. Ingresó a la Royal Society en 1672 por haber ideado un nuevo telescopio de reflexión que empleaba como elemento fundamental un espejo esférico cóncavo de menos de tres centímetros de diámetro y quince centímetros de distancia focal que amplificaba treinta veces (Figura 23). En la cuarta edición de su libro Opticks, menciona uno de quince centímetros de diámetro y casi dos metros de distancia focal, con amplificación hasta de 300 veces, dependiendo del ocular usado. Newton encontró que al pasar la luz solar por un prisma, ésta se descomponía en los colores del arco iris, o sea que la luz blanca era una mezcla de colores. Las lentes empleadas en los telescopios de Galileo y Huygens se comportan como prismas y descomponen la luz en diversos colores, produciendo imágenes defectuosas Esto se corrige en los telescopios de reflexión y por eso los grandes telescopios modernos (como los de San Pedro Mártir, en Baja California Norte, y el de Cananea, México) son de reflexión (Figura 24). Newton creía que no se podían corregir los defectos cromáticos de las lentes. De acuerdo con la ley de la refracción, al pasar un rayo de luz blanca del aire al vidrio se quiebra, alejándose de la normal a la superficie de separación. Al refractarse, la luz se descompone en los colores del arco iris, o sea que no se quiebra igual el rojo que el violeta. Newton no consideró que existen muchos tipos de vidrios y que cada uno de ellos descompone la luz blanca en forma diferente.
Figura 23. Esquema de uno de los telescopios construidos por Newton.
Figura 24. (a) Maquinado del espejo de dos metros de diámetro en el Instituto de Astrofísica, Óptica y Electrónica de Puebla, México, para el telescopio de Cananea.
Figura 24 (b) Telescopio con espejo de dos metros de diámetro de San Pedro Mártir, Baja California Norte.
Treinta años después de la muerte de Newton, John Dollond demostró que empleando combinaciones de lentes de diferentes tipos de vidrios se podía reducir notablemente la aberración cromática (Figura 25). Actualmente, todos los lentes de las cámaras fotográficas, microscopios, telescopios de refracción y en general de todos los instrumentos ópticos, se construyen con corrección cromática.
Figura 25. Corrección cromática lograda empleando dos o más lentes de diferentes tipos de vidrio.
En oposición a la teoría ondulatoria de la luz de Huygens, Newton desarrolló la teoría corpuscular, según la cual los objetos luminosos emiten partículas o corpúsculos luminosos. La razón que daba era que la luz viaja en línea recta, como lo demuestra el hecho de que un objeto iluminado produce sombras. Las ondas sonoras, en cambio, dan vuelta alrededor de los obstáculos que encuentran, de manera que uno puede oír un ruido que se produce a la vuelta de una esquina. Grimaldi, Young y Fresnell encontraron que la luz sí se desvía un poco alrededor de los obstáculos que encuentra, lo que es difícil de explicar en una teoría corpuscular.
Para explicar la ley de la refracción de la luz, Newton necesitaba que la luz se propagara más aprisa en el agua que en el aire, que era lo opuesto a lo que necesitaba la teoría ondulatoria de Huygens. Se tuvo que esperar dos siglos para que el francés Foucault midiera la velocidad de la luz en el agua y le diera la razón a la teoría ondulatoria de Huygens.
Olaus Roemer (1644-1710). Astrónomo danés. Fue la primera persona que midió la velocidad de la luz.
Galileo al descubrir los satélites de Júpiter observó que éstos se movían con precisión cronométrica, tanto que él trató de usarlos como un reloj de precisión que pudieran usar los marinos para determinar en altamar su posición geográfica.
Al girar en sus órbitas, los satélites son eclipsados por Júpiter y vuelven a aparecer.
Roemer observó con gran sorpresa que cuando la Tierra, al moverse en su órbita, se iba acercando a Júpiter, los eclipses llegaban progresivamente antes de lo esperado y cuando se iba alejando, los eclipses se retrasaban. La explicación de Roemer fue que cuando la Tierra y Júpiter se encuentran lejos, la luz que emiten sus satélites tarda más en llegar que cuando están cerca. De estas medidas obtuvo Roemer la velocidad con que se propaga la luz en el espacio.
Anteriormente hablamos de cómo Galileo y su ayudante trataron de medir la velocidad de la luz lanzándose señales luminosas desde dos colinas próximas y fallaron en su intento. Roemer encontró la manera de observar señales luminosas que le eran enviadas en tiempos precisos a través de una enorme distancia como es el diámetro de la órbita de la Tierra. Las "dos colinas" empleadas por Roemer le permitieron encontrar que la luz se propaga con una velocidad de 227 000 kilómetros por segundo. Las modernas determinaciones nos dan un valor de 299 792 kilómetros por segundo, pero la medida de Roemer no fue tan mala para ser la primera.
Roemer expuso su descubrimiento en 1676 en una reunión de la Academia de Ciencias de París. En l681 fue nombrado astrónomo real del rey Christiaan V de Dinamarca.
Tomas Young (1773-1829). Físico inglés. Después de los trabajos de Huygens y Newton, el avance de la óptica fue insignificante durante más de un siglo. El gran prestigio de Newton hizo que la teoría corpuscular fuera la que contara con una mayor aceptación entre los físicos de esa época y que la teoría ondulatoria de Huygens se le diera menos importancia.
El mejor argumento en contra de la teoría ondulatoria era que la luz producía o luz o sombra y que por lo tanto no era como las ondas sonoras que daban vuelta alrededor de los obstáculos que encontraba, o sea que se comportaba como un haz de partículas.
Un físico italiano, Francisco Grimaldi (1618-1663), haciendo pasar un haz luminoso por dos pequeños orificios, uno después de otro, había encontrado que la luz se desviaba un poco, produciendo una serie de anillos y colores. A este fenómeno lo llamó difracción de la luz. Estos estudios tuvieron poca resonancia en su tiempo, mas ciento cincuenta años después los trabajos de Young, Arago y Fresnell, hicieron ver la importancia de este descubrimiento.
A Young le interesaba el estudio del sonido y había observado que cuando un sonido de cierta frecuencia o tono pasaba por dos orificios, a veces se reforzaba y a veces casi no se escuchaba. Esto lo explicaba haciendo ver que las ondas sonoras que provenían de los orificios en ciertos lugares se reforzaban y en otros se anulaban, o sea que tenían interferencias constructivas y destructivas. Este fenómeno puede verse materialmente si se realiza con ondas de agua en un tanque.
Lo importante fue que Young lo realizó con ondas luminosas. Hizo pasar la luz a través de dos pequeños orificios y observó en una pantalla franjas alternadas de luz y de sombra, como en el caso de las ondas sonoras o las ondas de agua. Estos estudios no fueron bien vistos por los científicos ingleses porque estaban en contra de la teoría corpuscular de Newton, y correspondió a los franceses Fresnell y Arago desarrollar la teoría ondulatoria de la luz.
Agustín Juan Fresnell (1788-1827). Físico e ingeniero francés. Gran parte de su vida trabajó como ingeniero de caminos en Francia. Por oponerse al regreso de Napoleón de la isla de Elba perdió su empleo y, durante los cien días que duró su despido, se interesó por la óptica y la desarrolló en forma notable, construyendo la estructura matemática completa de la teoría ondulatoria de la luz.
Fresnell fue para la óptica lo que Newton para la mecánica, claro que hubo otros gigantes que lo precedieron, como Huygens, que inició y construyó las bases de esta teoría siglo y medio antes, así como Grimaldi y Young que observaron la difracción y la interferencia de la luz. Huygens supuso que las ondas luminosas eran longitudinales, como las sonoras en el aire, en cambio Fresnell supuso a las ondas transversales, es decir que las vibraciones eran perpendiculares a la dirección de propagación de la onda. Existía un fenómeno que no podía explicarse ni por la teoría corpuscular ni por la teoría ondulatoria con vibraciones longitudinales y era que si se miraba un escrito a través de un cristal de espato de Islandia (calcita), las letras se veían dobles.
Como las vibraciones transversales pueden darse en diferentes direcciones o planos, la luz al pasar del aire al espato de Islandia puede ser refractada en dos ángulos diferentes, porque uno de los rayos puede consistir en ondas que oscilan en un plano (luz polarizada) y el otro rayo en ondas que oscilan en un plano perpendicular al primero. La luz polarizada tiene grandes aplicaciones en la actualidad y fue empleada con gran éxito por Pasteur en sus estudios de química orgánica.
En 1815 presentó los resultados de sus investigaciones a la Academia de Ciencias de París y encontró fuerte oposición por parte de los grandes científicos: Laplace, Biot y Poisson. Poisson objetó que si esa teoría fuera cierta, la sombra de un disco debería tener un punto brillante en el centro, lo que consideraba absurdo. Los experimentos demostraron que no tenía nada de absurdo y que Fresnell tenía razón. En 1818 se le otorgó un premio de la Academia de Ciencias y los jueces que votaron en su favor en forma unánime fueron los que antes lo criticaron: Laplace, Biot y Poisson.
Fresnell diseñó las lentes que llevan su nombre que se usan en los faros y que son más eficientes que los espejos esféricos.
La mayor dificultad de la teoría ondulatoria de la luz fue encontrar el medio en que se realizaban las Vibraciones. Las ondas sonoras se propagan en el aire o en los líquidos o sólidos. Los partidarios de la teoría ondulatoria postularon la existencia del éter, que llenaba todo el espacio incluyendo la zona interplanetaria donde existe prácticamente un vacío absoluto. Las vibraciones del éter producían las ondas luminosas. Sólo los sólidos pueden transmitir ondas transversales, por lo que el éter, que llenaba todo, debía tener propiedades elásticas difíciles de entender y aceptar. La eliminación del éter tuvo que esperar al desarrollo de la teoría electromagnética de la luz de Maxwell y de la teoría de la relatividad de Einstein.
En las Mémoires de L'Academie Royale des Sciencies de L'Institut de France, volumen V, 1826, Fresnell dice:
Grimaldi fue el primero en observar el efecto que un rayo de luz produce en otro rayo. Recientemente el distinguido doctor Tomás Young lo ha demostrado por medio de un sencillo e ingenioso experimento en el que se producen franjas luminosas por el encuentro de rayos deflectados en dos lados de un objeto opaco.
Bandas luminosas más finas y brillantes pueden obtenerse cortando dos rendijas paralelas y próximas, en un cartón u hoja de metal y colocando la pantalla así preparada enfrente de un punto luminoso. Nosotros podemos observar por medio de una lupa colocada entre el cuerpo opaco y el ojo, que la sombra está llena de un gran número de brillantes franjas de colores por tanto tiempo como la luz ilumine a ambas rendijas simultáneamente, pero que desaparece cuando la luz se elimina de una de las rendijas.
Si permitimos que dos rayos de luz de la misma fuente luminosa se reúnan bajo un ángulo pequeño, al ser reflejados por dos espejos metálicos obtendremos también bandas similares con colores más puros y brillantes que antes.
En tiempos de Fresnell se empleaban en los experimentos rayos solares que se llevaban al laboratorio por medio de espejos y se descomponían en rayos de colores por medio de prismas. Hoy en día, con los rayos láser (del inglés, Light Amplification by Stimulated Emision of Radiation) se dispone de haces de luz monocromática (de un color) de gran intensidad y casi paralelos. Actualmente se puede lanzar un rayo láser a una región de la Luna y observar la luz que se refleja a la Tierra.
Con un aparato que emite rayos láser podemos producir bellos anillos de interferencia de la luz (Figura 26). El rayo se hace pasar por un orificio hecho en un cartón, se refleja posteriormente en un espejo en el que se depositó polvo de grafito de un lápiz, para dispersar un poco el rayo láser. Al regresar el rayo y pasar nuevamente por el orificio produce el espectro de interferencia en el cartón. La luz del rayo que usamos es de un rojo intenso, lo mismo que los anillos brillantes. El rayo láser se hizo más visible por medio de humo de cigarro.
Figura 26. Anillos de interferencia de la luz producidos al pasar un rayo láser (de ida y vuelta) por la superficie exterior de un espejo que tenía polvo de grafito para dispersar un poco el rayo.
José von Fraunhofer (1787-1826). Físico alemán. Estudió las diferentes propiedades ópticas de los vidrios, dependiendo de su proceso de fabricación. Fue el primero en usar rejillas de difracción (múltiples finos alambres paralelos colocados en un plano), que sustituyen a los prismas al descomponer la luz blanca en un espectro de colores. Desde ese tiempo se fabrican finas rejillas de difracción rayando placas de vidrio o metal con finos cortes de líneas paralelas.
Haciendo pasar la luz del Sol, primero por una rendija y después por un prisma, observó que el espectro solar está cruzado por numerosas líneas oscuras; él observó más de seiscientas.
De la misma forma observó que la luz de las estrellas tiene también líneas oscuras. Correspondió a Kirchhoff, medio siglo después, emplear estas líneas como un poderoso instrumento en las investigaciones físicas, químicas y astronómicas.
Armando Fizeau (1819-1896). Físico francés. Fue el primero en medir la velocidad de la luz en la Tierra empleando fundamentalmente el método ideado por Galileo pero altamente perfeccionado. Antes que él, Roemer y Bradley habían medido esta velocidad empleando cada uno métodos astronómicos diferentes.
En 1849, Fizeau colocó en una colina una rueda dentada que giraba rápidamente; en otra colina, separada unos ocho kilómetros, colocó un espejo e hizo pasar un haz de luz a través de los dientes del disco giratorio que se reflejó en el espejo y regresó a la rueda dentada después de recorrer diez y seis kilómetros. Si se va aumentando la velocidad de la rueda dentada, habrá un momento en que no se vea la luz reflejada porque un diente lo impedirá. La velocidad de la luz se encontró dividiendo la distancia recorrida (diez y seis kilómetros) entre el tiempo empleado por un diente de la rueda en ocupar el hueco próximo. El valor hallado fue un cinco por ciento mayor al que ahora se considera como más preciso (Figura 27).
Figura 27. (a) Método de Fizeau para determinar la velocidad de la luz, empleando una rueda dentada que giraba a gran velocidad
Figura 27. (b) Método de Foucault para determinar la velocidad de la luz en el aire y en el agua, empleando un espejo que giraba a gran velocidad mientras que la luz va y viene del tubo, el espejo rotatorio gira un ángulo G y el rayo B a C forma un ángulo 2G, con la dirección del rayo inicial.
En el caso de las ondas sonoras, a cada tono corresponde una frecuencia (número de oscilaciones cada segundo). A un tono agudo, una frecuencia alta y a un tono grave, una baja.
Doppler observó (1842) que el silbato de un tren tenía un tono más agudo (mayor frecuencia) cuando se acercaba, que cuando se alejaba. En la actualidad, con tantos automóviles tocando sus bocinas al acercarse y alejarse de nosotros, todos hemos observado este fenómeno.
Teniendo en cuenta que la luz es, como el sonido, un fenómeno ondulatorio, a cada color le corresponde una frecuencia. Al rojo una frecuencia menor, al violeta mayor y frecuencias intermedias a los colores intermedios el arco iris.
Fraunhofer había encontrado que la luz del Sol y las estrellas al observarse a través de una rendija y un prisma (espectroscopio) tenían una serie de líneas oscuras y que a cada una correspondía una frecuencia definida.
Fizeau hizo ver que el efecto Doppler también debería producirse con las ondas luminosas y que si una estrella se aleja de nosotros la posición de las líneas del espectro debía de moverse hacia el rojo (disminuyendo su frecuencia) y al acercarse, correrse hacia el violeta. Este efecto ha sido una arma poderosa para estudiar el Universo que nos rodea.
Juan Bernardo Foucault (1819-1868). Físico francés. Colaboró con Fizeau en la determinación de la velocidad de la luz, por medio de la rueda dentada, y poco tiempo después desarrolló su propio método.
Foucault sustituyó la rueda dentada por un espejo rotatorio. Se envía un haz luminoso al espejo rotatorio y durante un corto instante, cuando tiene una posición adecuada, la luz reflejada se dirige al espejo fijo que la regresa nuevamente al espejo rotatorio. Al llegar nuevamente al espejo rotatorio, éste habrá girado un cierto ángulo y se reflejará en una dirección diferente a la dirección en que se inició el experimento. Con estas medidas, Foucault midió la velocidad de la luz casi con el valor que se considera como el más exacto. Además, con este método no se requiere que el espejo fijo se encuentre muy lejos del espejo rotatorio y así pudo determinar la velocidad con que la luz se propaga en el agua.
De acuerdo con la teoría ondulatoria de la luz, ésta debe propagarse más lentamente en el agua que en el aire, y de acuerdo con la teoría corpuscular, al contrario. Foucault encontró que la teoría ondulatoria era la correcta.
Foucault se hizo famoso por haber ideado el péndulo que lleva su nombre y con él demostró que la Tierra gira alrededor de su eje (véase el capítulo sobre mecánica).
Gustavo Roberto Kirchhoff (1824-1887). Físico alemán. Observó que al colocar una sal o mineral en una flama intensa, la sustancia emite luz que, al ser analizada con un espectroscopio (una rendija, un prisma y un anteojo), producía un espectro formado por numerosas líneas de colores. De esta experiencia dedujo que cada elemento químico, cuando se le calienta hasta hacerlo incandescente, emite un espectro de líneas de colores característico. Esto es que si un experto mira esa combinación de líneas puede decir de inmediato de qué elemento se trata (como si estuviera leyendo oro, plata, sodio, etc.), como si viera la huella digital o firma del elemento (Figura 28). Notó que los vapores de sodio producidos al quemar sal común (cloruro de sodio) en una flama intensa, producen una línea muy notable por ser doble, amarilla y muy intensa. Al observar la luz solar vio que esa misma raya doble existía en la región amarilla del espectro, pero como línea oscura. Ésta ya había sido observada por Fraunhofer, quien la llamó línea D.
Figura 28. Espectros ópticos de varios elementos que empleó Kirchhoff para determinar los elementos que contenían el Sol y las estrellas a las líneas más notables, entre ellas la característica línea D del sodio.
La explicación de Kirchhoff para explicar las líneas oscuras, que confirmó con experimentos, fue que al pasar la luz por el vapor de un elemento, éste absorbe intensamente los colores característicos de las líneas espectrales que emite. Así, del espectro continuo que el Sol emite como cuerpo incandescente, al pasar por la atmósfera solar formada por vapores de diversos elementos, se absorben los colores característicos de dichos elementos, produciéndose las rayas oscuras.
El método desarrollado por Kirchhoff es una de las armas más poderosas que existen actualmente para averiguar los elementos que contiene cualquier sustancia, tanto en la Tierra como en las estrellas y otros objetos de Universo.
Con su método destruyó la afirmación categórica de Augusto Comte, quien pocos años antes había dicho que la constitución de las estrellas era un ejemplo de la clase de información que la ciencia era incapaz de obtener.
El banquero de Kirchhoff, al conocer este trabajo, comentó: "De que nos sirve saber que en el Sol hay oro, si no lo podemos traer a la Tierra." Cuando Kirchhoff fue premiado por su trabajo con cierta cantidad de monedas de oro, se las enseñó a su banquero y le dijo: "Éste es oro del Sol."
El método de Kirchhoff permitió encontrar nuevos elementos tanto en el Sol como en la Tierra. Por ejemplo, el gas helio (del griego hélios, Sol) fue descubierto en 1868 en la atmósfera solar. El cesio, el rubidio y el indio, fueron descubiertos en minerales terrestres.
La fotografía y la cinematografía
Orígenes Al principio de este capítulo vimos como Alhazen inventó la cámara oscura. Este aparato fue ideado para observar los eclipses de Sol sin dañarse la vista, pero es la parte esencial de la cámara fotográfica o cinematográfica moderna.
Antes que Alhazen, los toltecas, en la antigua ciudad de Xochicalco, México, construyeron una cámara oscura colocando una piedra con orificio circular en lo alto de una caverna. La imagen del Sol y de la Luna, así como su movimiento diurno, podía observarse en el piso de la cámara (Figura 29).
Figura 29. La primera cámara del mundo fue construida en Xochicalco, México, para hacer investigaciones astronómicas.
La cámara oscura evolucionó cuando Girolamo Cardano (1501-1576) colocó una lente en el orificio. En 1558, el pintor Battista della Porta recomendaba su uso para obtener perspectivas perfectas.
La cámara oscura llegó a la perfección con Juan Zahn, quien en 1685 construyó una cámara portátil réflex, muy parecida a las cámaras fotográficas actuales, en la que la luz, después de atravesar la lente, se reflejaba en un espejo plano y la imagen se formaba sobre un vidrio despulido. Lo único que faltaba era la placa fotográfica.
José Nicéforo Niepce (1765-1833). Inventor francés. Fue el primero en producir una fotografía permanente (1826). El método consistió en colocar sobre una placa metálica una capa de asfalto o betún de Judea, disuelto en petróleo blanco. Después de exponerlo en la cámara oscura, se produjo una imagen latente que fue revelada lavando la placa con una mezcla de aceite de lavanda y petróleo, que disolvieron la parte del betún que no había sido endurecida por la exposición a la luz.
Este proceso, que Niepce llamó heliografía, requería de largas exposiciones para endurecer el betún. Inventó la cámara de fuelle y el diafragma variable de las lentes. Asimismo se asoció con Daguerre para perfeccionar la fotografía.
Luis Daguerre (1789-1851). Inventor francés. Desarrolló notablemente la fotografía, primero asociado con Niepce y después independientemente.
El método de Daguerre consistía en platear una placa de cobre pulido y exponerla a vapores de yodo que producían, al reaccionar con la placa, pequeños cristales de yoduro de plata en la superficie. Esto se hacía en la oscuridad.
Después de exponer la placa en la cámara fotográfica, la imagen latente se revelaba exponiéndola a los vapores que producía el mercurio al calentarlo a 60 grados. Los vapores de mercurio formaban pequeñas gotitas en las regiones expuestas a la luz en las partes claras de la fotografía. De las partes no expuestas (oscuras) se eliminaban los cristales de yoduro de plata por medio de un fijador, el hiposulfito de sodio.
La evolución de la cámara oscura hasta la cámara fotográfica de Daguerre se muestra en la figura 30.
Figura 30. (a) Cámara obscura de Alhazen para observar eclipses de Sol. b) Cámara obscura de Cardano con una lente biconvexa. (c) Cámara obscura réflex de Juan Zahn. d) Cámara fotográfica de Daguerre con lente, diafragma y placa fotográfica.
El equipo oficial de daguerrotipo, firmado por Daguerre y fabricado exclusivamente por Giroux, pesaba más de 50 kilogramos y tenía, entre otras cosas, una cámara fotográfica de madera, una caja de placas, una cámara de yodización, una cámara de vapores de mercurio, polvos de pulir, botellas con productos químicos. El lente de la cámara era fabricado por Chevalier, con distancia focal de 38 cm y apertura de f/14.
Catherwood trajo un equipo de estos a México para tomar fotografías de los templos y monumentos mayas y que le sirvieron para publicar en 1844 su bello libro Views of Anciet Monuments in Central America, Chiapas and Yucatan, editado en Nueva York.
Este tipo de cámara fue perfeccionado y se le añadieron mejores lentes. En 1840, Voigtlander, en Alemania, produjo una lente con distancia focal de 15 centímetros y f/3.6, que era 30 veces más luminosa que la que empleó inicialmente Daguerre. Esta lente permitió reducir notablemente el tiempo de exposición y fue empleada para retratar seres vivos.
Evolución de la fotografía
Muchas personas desarrollaron la fotografía. Talbot en Inglaterra empleó papel (en vez del cobre), con una capa de cloruro de plata, obteniendo negativos de los que se podían obtener varios positivos.
En Francia, Le Gray perfeccionó la fotografía sobre papel con la invención del proceso del papel encerado. Las grandes ventajas eran que el papel podía prepararse varias semanas antes de su uso y que podían revelarse varias semanas después, por lo que era ideal para tomar fotografías durante un viaje, pues lo único que se transportaba era la cámara y el tripié. El grano de la fotografía era fino.
Notables mejoras se produjeron al emplear negativos de vidrio con emulsiones, primero de clara de huevo, después de colodión y por último de gelatina. En 1880, las placas fotográficas "secas" de vidrio simplificaron la fotografía y, de acuerdo con los fabricantes, cualquier persona se transforma en fotógrafo con sólo estudiar tres lecciones.
Otro cambio notable se produjo con el invento del celuloide por Alejandro Parkes en 1861 en Inglaterra, que permitió producir rollos de películas fotográficas.
En 1888 Jorge Eastman introdujo la cámara fotográfica Kodak de cajón con el lema: "Usted aprieta el botón, nosotros hacemos el resto."
En 1889, Karl Zeiss inició la producción de lentes de alta calidad en Alemania, llegando a ser la productora de las cámaras fotográficas de mayor calidad.
Actualmente se producen en Japón pequeñas cámaras fotográficas de alta calidad que enfocan, dan la abertura de exposición y producen la iluminación necesaria, en forma automática, por medio de circuitos y sensores electrónicos.
El desarrollo de la película fotográfica de celuloide permitió a Edison inventar, en 1889, el cinetoscopio, que consistía en pasar ante los ojos de un observador una cinta fotográfica iluminada por la cara opuesta y que se movía intermitentemente.
Augusto Lumière (1862-1954) y Luis Lumière (1864-1948). Inventores franceses. En 1894 perfeccionaron el cinematógrafo, tanto el aparato para producir películas, como el aparato proyector que permitía a un numeroso público ver las películas sobre una pantalla. Desarrollaron, además, la fotografía en colores.
El cine sonoro, en el que se acopló un disco sonoro con una cinta cinematográfica, fue posible con el descubrimiento, por el norteamericano Lee de Forest (1923), del tubo electrónico, que permitió aumentar a voluntad la intensidad del sonido de los discos fonográficos.
2. LA ELECTRICIDAD Y EL MAGNETISMO
Los griegos sabían que al frotar el ámbar, éste atraía pequeños cuerpos ligeros. El ámbar se llama en griego "electrón" y de ahí deriva el nombre de electricidad.
Respecto al magnetismo, Epicuro en su libro De la naturaleza de las cosas dice:
De las cosas que quedan voy a explicar ahora por qué ley natural sucede que pueda atraer al hierro esa piedra, a la que los griegos llaman magneto porque su sitio de origen está en los límites patrios de la Magnesia.
De esa piedra tienen admiración los hombres porque, con los pequeños anillos que suspenden de sí, muchas veces simula ser una cadena. Hasta cinco y más anillos cabe mirar en ocasiones, puestos uno tras otro balancearse al aire ligero: cada uno depende de otro al cual se encuentra por debajo adherido y, de uno a otro, se van pasando la fuerza y atracción de la piedra.
Su desarrollo como una ciencia
Actualmente la electricidad y el magnetismo forman un sólo capítulo de la física, que permaneció en estado primitivo hasta 1785 en que Coulomb descubrió la ley que lleva su nombre. A partir de esa fecha, los descubrimientos en el campo de la electricidad se multiplican y producen una gran revolución tecnológica en el mundo. Las comunicaciones terrestres, marítimas y aéreas, requieren el empleo de motores y generadores eléctricos. Las comunicaciones eléctricas, como el teléfono, el radio y la televisión, son elementos indispensables de la vida moderna. El trabajo en las fábricas y en el campo requiere del empleo de la energía eléctrica.
Carlos Agustín Coulomb (1736-1806). Físico francés. Encontró que las cargas eléctricas se atraen o se repelen con una fuerza que es proporcional al producto de sus cargas e inversamente proporcional con el cuadrado de la distancia, o sea que al alejarse dos cargas eléctricas la fuerza disminuye con el cuadrado de la distancia. Dos cargas de signos contrarios se atraen y de signos iguales (las dos de carga positiva o negativa) se repelen. Esta ley es matemáticamente similar a la ley de la gravitación de Newton excepto que las masas sólo se atraen, o sea que no hay masas positivas y negativas.
Para comprobar la ley que lleva su nombre, Coulomb inventó la balanza de torsión. Coulomb escribe:
En una Memoria presentada a la Academia he determinado mediante experimentos las leyes de las fuerzas de torsión de un alambre metálico y he encontrado que esa fuerza es igual al producto del ángulo de torsión, de la cuarta potencia del diámetro del alambre suspendido y de la inversa de su longitud, todo multiplicado por un coeficiente constante, que depende de la naturaleza del metal y que es fácil de determinar experimentalmente.
He demostrado en la misma Memoria que, mediante el uso de esa fuerza de torsión, es posible medir con precisión fuerzas muy pequeñas, como, por ejemplo, un diezmilésimo de grano.
Someto hoy a la Academia una balanza eléctrica construida sobre este mismo principio; mide exactamente el estado y la fuerza eléctrica en un cuerpo, por más débilmente cargado que éste se halle.
Teniendo en cuenta que un grano es equivalente a 0.06 gramos, este tipo de balanza fue durante más de un siglo el instrumento de mayor precisión para medir fuerzas y fue empleado posteriormente por Cavendish para comprobar la ley de la gravitación de Newton.
Luis Galvani (1787-1798). Anatomista italiano. En sus estudios sobre ranas muertas encontró que una descarga eléctrica produce contracciones en los músculos de los animales. También, que al tocar los extremos del músculo con dos metales diferentes unidos en un extremo se producía la misma contracción. Aunque no pudo explicar satisfactoriamente este fenómeno, sirvió para que Volta lo explicara y desarrollara las pilas o baterías eléctricas con las cuales se produce corriente eléctrica.
A sugerencia de Ampñre, el aparato que mide corrientes eléctricas se llama galvanómetro y de ahí se deriva la palabra galvanizar que significa que por medios eléctricos se ha depositado una capa de metal (generalmente cinc) para evitar que se oxide.
Alejandro Volta (1745-1827). Físico italiano. Descubrió el electróforo que consiste en dos discos metálicos; uno cubierto con un material aislante y otro con un maneral aislado. Por frotamiento se carga de electricidad el material aislante y de ahí se pudo obtener una carga eléctrica en el disco móvil (con el maneral) las veces que uno la necesite. En 1799 fue nombrado profesor de la Universidad de Pavia, donde inventó las baterías o pilas eléctricas que revolucionaron el estudio de la electricidad y cambiaron al mundo.
En ese tiempo, los experimentos de Galvani dividieron a los científicos en dos grupos: los que con Galvani y Humboldt pensaban que cuando con dos metales diferentes y unidos en un extremo se tocaban los músculos de una rana, se producía una corriente eléctrica que salía de los músculos; y otro, con Volta y Coulomb, que aseguraba que la corriente se generaba en los metales.
Para probarlo, Volta construyó pilas o baterías empleando metales diferentes que produjeron corriente eléctrica sin la necesidad de emplear, como hasta entonces, músculos de rana.
En 1800, en un recipiente que contenía una solución salina, introdujo dos placas de metal, una de cobre y otra de cinc, y al conectarlas con un alambre, por ellas pasó una corriente eléctrica que lo calentó. Volta conectó varios de estos dispositivos en serie (uno a continuación de otro), con lo que obtuvo mayor corriente, y de ahí deriva el nombre de batería.
Para hacer más compactas las baterías, Volta empleó pequeños discos alternados de cobre y cinc, separados por cartones empapados en la solución salina. El primer disco fue de cobre, correspondiendo al polo positivo de la pila y el último de cinc que era el negativo. Al conectar un alambre entre los polos se producía una corriente eléctrica.
La invención de la batería dio a Volta gran fama. Fue llamado a Francia por Napoleón, quién lo hizo conde y miembro de la Legión de Honor.
Al comprar una batería debemos indicar su voltaje, o sea que la fuerza electromotriz (la que mueve las cargas dentro del alambre) se mide en volts en honor a Volta.
El poder disponer de un voltaje capaz de producir corrientes eléctricas produjo una gran revolución tecnológica en la física y en la química. Permitió a Ohm, Ampère y Faraday desarrollar las leyes que llevan sus nombres, y a Nicholson descomponer el agua en hidrógeno y oxígeno al introducir en un recipiente con agua, dos alambres conectados a una pila. En el alambre positivo se produjeron burbujas de gas oxígeno y en el negativo de hidrógeno.
Actualmente, muchos elementos y sustancias pueden obtenerse por este método (electrólisis).
Andrés María Ampñre (1775-1836). Físico y matemático francés. Siendo profesor de matemáticas en París en 1820 supo que el danés Oersted había encontrado que una corriente eléctrica desviaba a la aguja de una brújula, relacionando por primera vez a la electricidad con el magnetismo. Ampñre se puso a trabajar activamente en este campo y en pocas semanas comenzó a publicar una serie de artículos que desarrollaron notablemente la electricidad.
Encontró que si por dos alambres paralelos circulan corrientes eléctricas en la misma dirección, los alambres se atraen y si circulan en direcciones opuestas, se repelen (Figura 31).
Figura 31. La ley de Ampñre nos dice que dos alambres paralelos por los que circule corriente eléctrica en la misma dirección se atraen y, si se mueve en direcciones opuestas, se rechazan. Es la base del funcionamiento de los modelos eléctricos.
La explicación de Ampère era que al pasar una corriente eléctrica por uno de los conductores producía un campo magnético sobre el otro conductor. Y que cuando un conductor esté sometido a un campo magnético externo y circule por él una corriente eléctrica, obrará sobre el conductor una fuerza.
Ampñre encontró la fórmula que nos da el valor de la fuerza, la llamada ley de Ampére, en la que se basa el funcionamiento de los motores eléctricos, actualmente indispensables en las comunicaciones, la industria y el hogar.
Por medio de la ley de Ampñre se puede encontrar en todo punto del espacio el campo magnético producido por una corriente eléctrica que circule por un alambre de cualquier forma.
Para Ampñre, todo campo magnético es producido por corrientes eléctricas. Los imanes permanentes producen un campo magnético, por lo que cada porción del imán debe contener corrientes eléctricas.
En esto, Ampñre se adelantó casi cien años a la moderna teoría atómica en la que cada átomo está formado por un núcleo positivo, rodeado por corrientes eléctricas de electrones planetarios.
Para Ampñre, una bobina cilíndrica es equivalente a un imán cilíndrico. Si giramos un tirabuzón en el sentido de la corriente eléctrica, entrará por el polo sur y saldrá por el norte. Si tenemos dos bobinas como las que se muestran en la figura 31, en las que las corriente van en el mismo sentido, quedará un polo norte en frente de un polo sur, y por ser polos opuestos se atraerán.
Al pasar una corriente eléctrica en la misma dirección por dos bobinas suspendidas, éstas se atraen y se juntan.
En su honor, la corriente eléctrica o sea la cantidad de electricidad que pasa por un alambre en cada segundo, se mide en amperes y los aparatos que miden la corriente eléctrica se llaman amperímetros.
Jorge Simón Ohm (1787-1854). Físico alemán. Estudió la corriente eléctrica que pasa por un alambre que se conecta a una pila de Volta. Encontró que la corriente aumenta proporcionalmente con el área de la sección del alambre y que disminuye (inversamente proporcional) con la longitud del alambre. O sea que los alambres presentan una "resistencia" al paso de la corriente eléctrica que dependen del material de que está formado, que aumenta con la longitud del alambre y disminuye con el área de su sección.
La Ley de Ohm nos dice que la corriente que circula por un alambre es directamente proporcional al voltaje aplicado e inversamente proporcional a su resistencia eléctrica. En su honor, la unidad de resistencia eléctrica se mide en ohms.
Miguel Faraday (1791-1867). Físico y químico inglés. Se inició en la ciencia como ayudante del famoso químico Davy, quien al colocar los dos alambres que salen de una pila de Volta a un recipiente que contenía potasa fundida, observó que en uno de los alambres se depositó un elemento que Davy llamó potasio. Colocando en el recipiente soda fundida, también encontró el sodio.
Faraday estudió el fenómeno de la electrólisis; encontró sus leyes y le dio el nombre de electrolito al compuesto o sustancia que conduce la corriente eléctrica. A las barras que se introducen en la sustancia fundida o solución les dio el nombre de electrodos, llamando cátodo al negativo y ánodo al positivo. En su honor, una constante universal asociada al fenómeno de la electrólisis se llama la constante de Faraday.
Como hemos visto, Coulomb encontró cómo son las fuerzas entre las cargas eléctricas; Volta descubrió cómo producir corrientes eléctricas y voltajes por métodos químicos (las pilas o acumuladores eléctricos) y Ampñre cómo son los campos magnéticos producidos por las corrientes eléctricas.
Faraday consideró que, si las corrientes eléctricas producen campos magnéticos, los campos magnéticos deberían poder producir corrientes eléctricas. Esto lo condujo a formular la ley de Faraday, su descubrimiento más importante.
Faraday enrolló un alambre de cobre en un sector de un anillo de hierro, y lo conectó a un interruptor y a una pila eléctrica. En otro sector enrolló otro alambre de cobre que conectó a un medidor de corriente eléctrica muy sensible, llamado galvanómetro. Observó que en el momento en que conectaba el interruptor en el primer circuito, una corriente eléctrica, transitoria, se producía en el otro circuito, esto es, que cuando un flujo magnético variable o transitorio atraviesa un circuito eléctrico (o bobina) se produce un voltaje que produce una corriente eléctrica en el circuito.
Encontró que aun quitando el hierro, la señal pasaba de un circuito a otro, lo que resultó ser la primera transmisión de una señal eléctrica en el espacio, tan común en nuestros días con el uso de la radio y la televisión.
Un flujo magnético variable se puede producir al mover un imán frente a un circuito (o al circuito frente al imán) y de acuerdo con la ley de Faraday se producirá un voltaje y una corriente eléctrica (Figura 32).
Figura 32. Método de Faraday para transformar trabajo mecánico en corriente eléctrica empleando un imán.
En esta ley se basa el funcionamiento de los dínamos de las bicicletas o alternadores de los coches, que transforman un movimiento mecánico en corriente eléctrica; igualmente es la base de la producción de electricidad en las grandes presas, instalaciones nucleares y plantas termoeléctricas.
Entre la multitud de descubrimientos de Faraday, podemos mencionar la construcción del primer motor eléctrico, empleando las fuerzas entre conductores que Ampñre descubrió.
Su anillo de hierro con dos bobinas es lo que ahora se llama un transformador eléctrico, como el que vemos en postes o subestaciones eléctricas para cambiar los voltajes de las líneas.
En su honor y por las investigaciones que realizó con los condensadores o capacitores eléctricos (dispositivos que almacenan energía), la unidad de capacidad eléctrica se mide en faradios.
Jaime Clerk Maxwell (1831-1879). Físico y matemático escocés. Con su obra se alcanzó la culminación en los campos de la electricidad y el magnetismo. Al desarrollar su famosa teoría electromagnética hizo ver que la luz era un fenómeno electromagnético, por lo que la óptica pasó a formar parte de la electricidad.
Demostró que una carga eléctrica oscilante produce una radiación de energía que sale de la carga y que se propaga a la velocidad de 300 000 kilómetros en cada segundo, la velocidad de la luz.
A cada tono de una onda sonora se asocia una frecuencia de oscilación, y lo mismo a cada color de la luz. Puesto que la luz sólo cubre un pequeño intervalo de frecuencias, y una carga eléctrica puede oscilar a cualquier frecuencia, además de la luz debían existir otras radiaciones.
Cincuenta años antes ya habían sido descubiertas radiaciones no visibles, la luz infrarroja, por Herschel, y la luz ultravioleta, por Ritter. A Hertz correspondió comprobar la existencia de otras ondas predichas por Maxwell, más allá del infrarrojo, las ahora llamadas ondas hertzianas u ondas de radio.
Las implicaciones de la obra de Maxwell en el desarrollo tecnológico son enormes. Entre ellas podemos mencionar el desarrollo de la radio, la televisión, el teléfono inalámbrico, las comunicaciones de microondas y a través de satélites.
Desarrolladas las bases de la electricidad y el electromagnetismo, se inició una era de invenciones e innovaciones.
Alejandro Bell inventa el teléfono en 1786, que constituyó la sensación en la exposición de Filadelfia de ese año.
Tomas Alva Edison, en 1876 funda en Menlo Park, Estados Unidos, el primer laboratorio de investigación industrial. Los trabajos que ahí realizó fueron notables y entre ellos destaca el fonógrafo y, en 1879, el foco de luz eléctrica. A éste le agregó un alambre próximo al filamento y observó que a través del vacío que los separaba, pasaba la corriente eléctrica.
José Juan Thomson, notable físico inglés, demostró la existencia del electrón en 1897. El electrón es una partícula de carga negativa, con una masa casi dos mil veces menor que la del átomo de hidrógeno (que es el más pequeño). Thomson demostró que los electrones son las partículas que emiten los filamentos calientes.
Nicola Tesla (nacido en Yugoslavia) desarrolló transformadores de alto voltaje que permitieron transportar la electricidad a distancia, con menores pérdidas. Con sus inventos, ayudó a George Westinghouse a fundar una compañía eléctrica empleando las cataratas del Niágara como fuente de energía. En su honor, la intensidad del campo magnético se mide en teslas.
Enrique Rodolfo Hertz, en Alemania (1888), produjo ondas electromagnéticas por medio de chispas eléctricas entre dos esferas cargadas y a distancia; pudo detectar las ondas electromagnéticas que Maxwell había predicho teóricamente.
Alejandro Popov, en Rusia (1897), inventó la antena y con ella pudo hacer transmisiones de ondas electromagnéticas a distancia. Transmitió señales entre un barco y tierra a cinco kilómetros de distancia.
Guillermo Marconi, en Italia, perfeccionó la transmisión de las ondas hertzianas y logró en 1901 transmitir señales electromagnéticas entre Inglaterra y Terranova.
Lee de Forest, en Estados Unidos (1906), inventa el bulbo o tubo electrónico llamado triodo, que consiste en un bulbo al vacío que contiene un filamento caliente, una rejilla y una placa colectora. Este invento, que amplifica señales eléctricas, revolucionó al mundo, pues fue la base de la transmisión por radio, la televisión, el cine sonoro y las computadoras. Posteriormente, los bulbos se perfeccionaron, agregándole dos rejillas más y se llamaron pentodos. Su invento fue la base de una gran industria electrónica.
Guillermo Shockley, nacido en Inglaterra, inventó el transistor en 1948. Este dispositivo realiza las mismas funciones que los bulbos electrónicos, teniendo las ventajas de ser muy pequeño, durable y de poder fabricarse a bajo costo. Su empleo produjo una gran revolución tecnológica en la electrónica, la industria y la instrumentación. También cambió nuestra forma de vida, con el desarrollo masivo de la radio y la televisión.
![]()