II. DE COLORES Y OTRAS COSAS

1. LOS COLORES

HASTA el momento todas nuestras reflexiones sobre la luz han sido en blanco y negro. Ahora nos toca introducir el color, ese otro gran ingrediente de la luz que contribuye a la riqueza visual de la naturaleza.

Empecemos por anotar algunas observaciones generales sobre el color. En primer lugar observamos que la luz siempre lleva asociado algún color, o una combinación de ellos; esto nos sugiere que el color ha de estar relacionado con alguna propiedad física de la luz. En ocasiones el color de la luz es difícil de definir a simple vista, pero, como se verá después, hay formas de determinar aproximadamente qué proporción de cada color está contenida en cualquier tipo de luz.

Otra observación es que dos factores contribuyen al color de los objetos: éstos mismos y la luz que los ilumina. Por ejemplo, una hoja de papel blanco es blanca cuando está iluminada por la luz del Sol, pero se ve roja cuando se la ilumina con luz roja. Seguramente le ha sucedido que compra usted un objeto de determinado color, escogido bajo la iluminación artificial de la tienda, y al salir de ella descubre bajo la luz del Sol que ése no era el color que usted buscaba.

¿Cuál es, entonces, el origen del color, y cuál es el color de las cosas? Vayamos por pasos.

La luz emitida por un foco o fuente de luz tiene un color que depende de la fuente: del material que la constituye, del mecanismo de emisión y de condiciones físicas, como la temperatura de la fuente. Por ejemplo, cuando la fuente es un filamento incandescente, como el de los focos domésticos o bombillas, la luz es esencialmente blanca, en ocasiones con un tono amarillento o rojizo. Las lámparas fluorescentes, en cambio, emiten una luz que parece más fría, porque contiene más luz azul. Otras fuentes son el Sol y las estrellas, una flama de gas o de una vela, una lámpara de vapor de mercurio, una resistencia eléctrica que se ha calentado al rojo vivo..., y cada una de estas fuentes emite luz de un color característico.

Ahora supongamos que tenemos una fuente emisora de luz monocromática, o sea luz de un solo color. No es fácil fabricar un emisor de luz monocromática, pero en su defecto se puede usar una fuente de luz blanca, cubierta con un vidrio de un color puro, por ejemplo rojo; así, lo que se obtiene es luz roja. Algunos objetos iluminados por esta luz se verán más claros que otros, pero todos se verán rojos y de ningún otro color. Esto nos indica que los objetos no cambian el color de la luz que les llega; sólo afectan su intensidad, su brillo. Las superficies que parecen más claras son las que reflejan mayor cantidad de luz roja y absorben menos. Los materiales más transparentes son los que dejan pasar una mayor cantidad de luz roja sin absorberla. Los objetos más oscuros son los que más la absorben. En la figura (10a) se muestra una fotografía que fue tomada con este tipo de luz.







Figura 10. (a) Iluminación con luz roja.

Si ahora se apaga la luz roja y se alumbra con otra luz monocromática, digamos verde, el cuadro cambia: algunos objetos que antes se veían claros ahora se ven oscuros y viceversa (véase la Figura 10(b)). Esto indica que algunas superficies reflejan mejor la luz verde que la roja o a la inversa. Así también hay objetos que son transparentes a la luz roja, pero no a la verde, o viceversa.







Figura 10. (b) La misma escena, iluminada con luz verde.

Ahora enciéndanse simultáneamente la luz roja, la verde y una azul, en proporciones adecuadas de intensidad: los objetos parecen haber recuperado su color "normal" (Figura 10c). Las diversas superficies reflejan una proporción diferente de cada uno de los colores. Las superficies blancas son las que reflejan todos los colores; las negras no reflejan ninguno, porque lo absorben todo. Cuando un material transparente es incoloro es porque deja pasar todos los colores, sin reflejar o absorber ninguno en particular.







Figura 10. (c) La misma escena iluminada con los tres colores primarios (luz normal).

Aquí observamos otro detalle interesante: que cuando el rojo, el verde y el azul se suman en proporciones adecuadas, el resultado es blanco. Por ello a estos tres colores se les llama primarios.

La televisión a colores es un buen ejemplo de los sorprendentes resultados que se obtienen mediante la adición de colores primarios. La pantalla del televisor está cubierta de puntos fluorescentes de los tres colores: rojo, verde y azul. Dependiendo del color que se requiere reproducir, cada uno de estos puntos se activa en mayor o menor grado. Naturalmente, antes de ello la cámara de televisión tuvo que analizar la imagen punto por punto y separar la luz en sus colores primarios a través de una serie de filtros y espejos (Figura 11. (a)). Esta información se transforma después en señal eléctrica y se envía como una onda hasta el receptor de la televisión, el cual la decodifica y la envía a la pantalla, en forma de haz electrónico, para activar la cubierta fluorescente (Figura 11(b))







Figura 11. Adición de colores en la televisión. (a) La luz de la imagen entra en la cámara y se descompone en los colores prirmarios. Esta información es enviada del transmisor al receptor. (b) La señal captada por el receptor estimula los puntos fluorescentes de la pantalla; la combinación de colores es lo que percibe el ojo.

Si usted examina con una lupa las ilustraciones a color de una revista o las tiras cómicas del periódico dominical observará que también están hechas de puntos de colores. Usualmente estas impresiones están hechas con sólo tres tintas. En cambio, los pintores puntillistas del siglo pasado llenaban sus cuadros con miles de puntos de diversos colores, para producir una variedad de tonos que dan una sensación de sutileza y luminosidad cuando se miran desde cierta distancia.

Ya que hablamos de la apariencia de los objetos, cabe detenernos a analizar por qué los metales tienen esa apariencia tan característica que los distingue de otros objetos. Una superficie metálica lisa o bien pulida refleja la luz de manera especular; de hecho, los espejos más comunes consisten de una delgada capa metálica cubierta por una placa de vidrio para su protección. Pero el brillo característico que nos permite reconocer los metales no depende de lo bien pulida que se encuentre la superficie (con tal de que esté limpia), sino de que la reflexión de la luz es selectiva y se efectúa en la capa exterior de la superficie. Es decir, la superficie del metal refleja unos colores con más eficiencia que otros, y toda la luz que incide sobre el metal sufre el mismo proceso de selección.

Las superficies no metálicas, en cambio, tienen una capa exterior que refleja todos los colores en la misma proporción. La luz no reflejada penetra a través de esta primera capa hasta que es absorbida o reflejada por capas interiores de la superficie que sí son selectivas; son éstas las que le dan color a la superficie del objeto. De las propiedades especíñcas de estas diversas capas depende la textura de la superficie y su respuesta a las diferentes iluminaciones. Por ejemplo, si la cara superior es mate, producirá una reflexión difusa. Si abajo de ésta hay una capa de colorante transparente (como la tinta o la acuarela, por ejemplo), filtrará la luz que la atraviese. Si el soporte mismo de la superficie también es coloreado, contribuirá con una reflexión selectiva, y así sucesivamente. En manos de artistas, las posibilidades son infinitas.

2. EL ARCO IRIS

Todos hemos visto los colores del espectro en los bordes de un espejo, o en el arco iris que se forma en el cielo cuando el Sol ilumina las gotas de lluvia. Seguramente también ha oído usted acerca de los famosos experimentos que hizo Newton con prismas, y quizá hasta ha reproducido alguno de estos experimentos en clase. Recordemos de qué se trata.

Cuando se envía un haz de luz blanca hacia un prisma de vidrio (o de otro material transparente), el prisma refracta la luz dos veces: a la entrada y a la salida. Pero lo hace de una manera curiosa; descomponiéndola en todos los colores del espectro (Figura 12). En otras palabras, el prisma dispersa la luz en forma de abanico, separándola en cada uno de sus colores. La componente roja es siempre la que menos se quiebra y la violeta es la que sufre una mayor refracción.







Figura 12. Un haz de luz blanca es dispersado por un prisma, dando lugar al espectro.

Esta observación nos indica que el índice de refracción del vidrio es diferente para cada uno de los colores: para el naranja es mayor que para el rojo, para el amarillo mayor que para el naranja, etc. Cuando se habla a secas del índice de refracción de un material (por ejemplo, cuando se dice que el del agua es 1.33), generalmente se utiliza como referencia la luz amarilla (la emitida por el sodio). Pero en ocasiones se requiere mayor precisión: por ejemplo, para caracterizar el vidrio usado en la fabricación de instrumentos ópticos es necesario conocer su índice de refracción para la luz roja, la verde, la amarilla..., y es importante saber si este índice varía poco o mucho de un color a otro.

Esta separación de la luz en los colores del arco iris se puede producir de muchas maneras; no es necesario usar un prisma para ello. Por ejemplo, en los binoculares o los microscopios de juguete las imágenes suelen estar rodeadas de un halo de color a causa de la dispersión de la luz por las lentes: el vidrio refracta más la luz azul que la roja. En vez de formarse una sola imagen blanca, se forma una distinta con cada color. A este defecto de las lentes, que desmejora la calidad de la imagen, se le llama aberración cromática. Con una cuidadosa selección del vidrio y una adecuada combinación de lentes puede llegar a eliminarse casi totalmente este defecto cromático.

Hay algunos materiales que son especialmente efectivos en producir esta separación de colores, porque refractan la luz azul mucho más que la roja: su índice de refracción varía notablemente entre los extremos del espectro. El diamante es uno de estos materiales. Cuando una pieza de diamante tiene muchas caras, la combinación de refracciones y reflexiones múltiples da como resultado un bello conjunto de luces de purísimos colores.

Claro que la intensidad de cada uno de los colores que aparecen en el espectro depende de la luz original que se dispersó. Por ejemplo, si la luz era rojiza antes de entrar al prisma, el espectro contendrá básicamente luz roja, y una proporción menor de los otros colores. Si la luz es de un color puro, no se dispersa: sale del prisma igual como entró en él (pero desviada). Como puede verse, aquí tenemos un procedimiento para identificar cualquier luz: se la dispersa mediante un prisma y después se mide la intensidad producida por cada uno de sus componentes.

¿Cuántos colores hay en el espectro? Se ha hablado de los siete colores del arco iris desde tiempos muy remotos, cuando se le atribuían al número siete propiedades mágicas. El espectro de siete colores es tan arbitrario como la semana de siete días. En realidad, si uno observa con cuidado la luz que sale de un prisma puede percatarse de que hay una infinidad de colores diferentes; que la transición de uno a otro es gradual, siendo imposible definir la frontera entre un color y su vecino.

No sorprende, sin embargo, que el arco iris se haya considerado como un fenómeno mágico; hoy día su aparición continúa siendo una experiencia singular, y nos seguirá maravillando aunque conozcamos la explicación de su origen. Los detalles de la formación del arco iris son muy complejos, pero básicamente se puede entender como resultado de la refracción y la reflexión de la luz por las gotas de lluvia, como se ilustra en la figura 13. Como la luz roja se refracta menos que la violeta, aparece más alta en el cielo; esto explica el orden en la aparición de los colores. Obsérvese en la figura de dónde viene la luz que se dispersa: el observador debe estar de espaldas al Sol para poder ver el arco iris.






Figura 13. El arco iris se forma cuando las gotas de lluvia dispersan la luz del Sol. En este esquema, el observador recibe la luz roja de la gota más alta y la luz violeta de la más baja. Cuando hay millones de gotas se forma un arco con el espectro completo.

La mayoría de las personas perciben con claridad ese cambio gradual de color desde el rojo hasta el violeta en el espectro. Es más: dos haces de luz monocromática que correspondan a la misma posición en el espectro siempre los vemos del mismo color. Pero también pueden producirse diferentes combinaciones de luces que se vean del mismo color. Por ejemplo, una mezcla (con proporciones adecuadas) de rojo y verde puede igualar a una de amarillo con un poco de azul. De manera que no siempre podemos identificar con certeza, a "puro ojo", los componentes originales que intervienen en un color. Sin embargo, ya sabemos que con ayuda de un prisma podemos separar e identificar estos componentes.

Veíamos en la sección anterior que mediante combinaciones adecuadas de los tres colores primarios —rojo, verde, y azul— es posible producir cualquier color; no hay color alguno que no pueda obtenerse de esta manera. Esto tiene una consecuencia interesante: que para definir un color arbitrario basta especificar tres cifras, así como para definir cualquier punto en el espacio también son suficientes tres cifras. Al color blanco, por ejemplo, corresponde la terna (1/3, 1/3, 1/3) lo que indica que está compuesto de proporciones iguales de rojo, verde y azul. Podría decirse que a cualquier color corresponde un punto en el espacio cromático. [De hecho, cualquier terna de números iguales representa luz blanca; por ejemplo, (2, 2, 2) corresponde a una luz blanca de mayor intensidad].

Decíamos que la mayoría de las personas perciben sin dificultad las diferencias de colores. Sin embargo, aproximadamente el 8% de los hombres y el 0.4% de las mujeres no logran distinguir todos los colores, a veces por razones hereditarias y en ocasiones a causa de alguna enfermedad. A esta deficiencia visual se le llama daltonismo, en memoria de John Dalton, famoso químico de fines del siglo XVIII, quien hizo la primera descripción de esta deficiencia. Dalton mismo era daltónico, lo cual representaba para él una desventaja porque no podía percibir los cambios en los colores producidos por las reacciones químicas. La falla más común consiste en la incapacidad de distinguir los colores comprendidos entre el rojo y el amarillo, aunque también hay personas que confunden los colores comprendidos entre azul y el verde. Algunos muy especiales no distinguen color alguno; ven en blanco y negro. Ahora se sabe que una variedad de las células visuales que se encuentra en la retina (los conos) contiene tres tipos de una sustancia sensible a la luz de diferentes colores; estas células son las responsables de la percepción cromática. La ausencia de una o más de dichas sustancias se traduce entonces en la incapacidad de distinguir determinados colores.

3. OTROS COLORES EN EL CIELO

Alzando otra vez la mirada, tratemos de responder a la vieja pregunta: ¿por qué el cielo se ve azul de día, y a veces rojo al atardecer?

El color del cielo se debe a un fenómeno que no ha sido mencionado hasta ahora: la dispersión de la luz solar por la atmósfera. Siempre que un haz de luz atraviesa un gas, las moléculas del gas desvían una parte de esa luz en todas direcciones. Es como si la luz fuese un haz de municiones lanzadas a través de un gas formado de pequeñas pelotas; si no hay muchas pelotas (o sea, si el gas no es denso), la mayor parte de las municiones atraviesa sin desviarse, pero algunas chocarán con ellas y rebotarán en todas las direcciones posibles. Conforme aumenta la densidad del gas, se hace más notable el efecto de la dispersión. También los líquidos y los sólidos transparentes dispersan una fracción de la luz que los atraviesa, sobre todo cuando contienen impurezas. Cuando la dispersión es alta, se habla ya no de materiales transparentes, sino traslúcidos: aquellos que transmiten la luz de manera difusa.*

El efecto de dispersión por la atmósfera es más notable en la luz violeta y azul que en el resto del espectro. Por ello, aunque la luz solar es blanca, el Sol aparece amarillento cuando lo miramos de frente (porque ha perdido una parte de su componente azul), y en cambio la luz dispersada por la atmósfera, que ilumina el cielo, es esencialmente azul (véase la Figura 14)

 






Figura 14. La dispersión de la luz solar por la atmósfera. Un observador en A ve un Sol amarillento; el observador B lo ve rojizo. La luz indirecta (dispersada) es azul.

Al acercarse el Sol al horizonte, la luz que nos llega tiene que atravesar una capa más gruesa de atmósfera, por lo que la dispersión aumenta; la mayor parte de la luz violeta, azul y verde es desviada, de manera que sólo nos llegan los colores comprendidos entre el amarillo y el rojo. A esto se debe el color de los ocasos (Figura 14).

La dispersión producida por partículas más grandes es más irregular y afecta a todos los colores por igual. Por eso, cuando hay vapor de agua o partículas de polvo en la atmósfera, el cielo pierde su color azul y adquiere una apariencia blanquecina y difusa. Claro que cuando estos ingredientes adicionales de la atmósfera además de dispersar absorben una mayor fracción de la luz, el cielo se oscurece; se ve gris.

4. MANCHAS DE ACEITE Y POMPAS DE JABÓN

Hay otros fenómenos que llaman nuestra atención por su colorido y que seguramente han despertado alguna vez nuestro interés por encontrar una explicación. ¿Cómo se producen los hermosos colores en una capa delgada de aceite que flota sobre una superficie de agua? ¿Por qué las pompas de jabón reflejan la luz en forma de arco iris?

El origen de estos efectos de colores se puede entender si se considera lo que le sucede a la luz cuando atraviesa una capa muy delgada de un material transparente que está rodeada por ambos lados de otro medio transparente. Pero antes de ver lo que sucede, tenemos que considerar otro fenómeno que entra aquí en juego: la interferencia.

Cuando un haz de luz es dividido en dos haces más o menos iguales y éstos separados se superponen nuevamente, resulta que en la región donde los haces se han recombinado existen zonas oscuras que se alternan con zonas luminosas; la iluminación no es pareja.

Para observar este fenómeno con detalle se puede realizar el siguiente experimento: perfórese un pequeño agujero en una pantalla de cartulina negra con la que se cubre la ventana del cuarto, con el fin de que penetre apenas un estrecho haz de luz. Enfrente de la ventana colóquese una segunda pantalla negra, en la que se hayan hecho con una navaja dos ranuras muy delgadas y próximas entre sí (Figura 15). En seguida colóquese otra pantalla, pero esta vez blanca, para recibir la luz que ha pasado por las ranuras. Probablemente en el primer intento usted no observe nada especial, pero cambiando con cuidado las posiciones de las pantallas y la distancia entre las rendijas podrá obtener un resultado que le parecerá extraño: en la pantalla blanca se proyectan franjas de colores en forma alternada. Si no hay otras luces en el cuarto, esta imagen se percibe con mucha claridad.





Figura 15. El experimento de las dos rendijas. Un estrecho haz de luz atraviesa dos ranuras muy próximas; sobre la pantalla blanca aparecen proyectadas franjas de luz alternadas con franjas oscuras.

Esta experiencia fue realizada por Thomas Young, un médico inglés, en 1802, cuando el Sol era casi la única fuente de luz que se empleaba para los experimentos ópticos. Pero hoy día podemos remplazar la luz solar con la de una bombilla o foco incandescente, que es más fácil de adaptar a nuestras necesidades. Si empleamos luz monocromática, podemos hacer una observación adicional: la imagen proyectada consiste ahora de franjas oscuras que se alternan con franjas claras, siempre del mismo color.

La explicación de este efecto, ofrecida por el propio Young (aunque sus contemporáneos no se la querían aceptar; véase el capítulo III) se basa en el hecho de que la luz es un fenómeno ondulatorio.

Todos hemos tenido oportunidad de observar algunos comportamientos característicos de las ondas. Recordemos, por ejemplo, las ondas que se forman en la superficie de agua de un estanque. Si la fuente de estas ondas es pequeña (por ejemplo, una piedrita lanzada al agua), las ondas son circulares y se propagan en forma radial, hacia afuera. En cambio, si la fuente de ondas es plana (por ejemplo, una regla que agita el agua con un ligero movimiento periódico, las ondas son planas y se propagan todas en la misma dirección. Esta dirección de propagación no se modifica mientras las ondas no se encuentren barreras o con un cambio en el medio de la propagación. Si por ejemplo, la profundidad del agua cambia, la onda se desvía; sufre una refracción. Esto les sucede a las olas del mar cuando se aproximan a la playa.

Se observa también que cuando en el estanque hay una barrera, la onda se deforma al llegar a ella, como dándole la vuelta al obstáculo. El resultado es que la onda puede ser detectada aun detrás de la barrera aunque con una menor intensidad como se ilustra en la figura 16. Este efecto, llamado difracción, se presenta en todos los fenómenos ondulatorios. Gracias a la difracción del sonido podemos escuchar a alguien que nos llama desde otro cuarto: el sonido le da la vuelta a los bordes de las paredes. Es más, los tonos más bajos nos llegan mejor, lo que significa que las ondas de mayor longitud se difractan más.







Figura 16. Fotografía aérea de un puerto, en la que se muestra la difracción
de las olas en torno al borde de un rompeolas.

Esto explica por qué no es usual observar la difracción de la luz: la longitud de las ondas de la luz es sumamente pequeña, pequeñísima comparada con el tamaño de los objetos que nos rodean. Pero aun así, hay métodos sencillos para poner en evidencia el fenómeno. Por ejemplo, si coloca usted sus manos frente a sus ojos de tal manera que sólo pueda pasar la luz por una delgada rendija entre dos dedos, podrá observar bandas oscuras y claras, paralelas a los bordes de la rendija. De hecho, el italiano F. Grimaldi descubrió en 1650 la difracción de la luz al observar cuidadosamente la sombra de un cabello.

Como resultado de la difracción de la luz, los contornos de las sombras pierden su nitidez; la frontera entre luz y sombra deja de ser clara. En la zona del borde aparecen franjas claras y oscuras, como se ilustra en la figura 17.







Figura 17. La sombra de una navaja. Los efectos de los bordes se deben a la difracción de la luz.

Otra característica de las ondas es que pueden interferir unas con otras. Por ejemplo, cuando en el estanque de agua hay dos fuentes que generan ondas (véase la Figura 18), se observa que estas dos ondas se superponen al pasar por el mismo punto, sumándose o restándose según la altura de cada una de ellas. Recuérdese que la parte más alta de una onda se llama cresta y la más baja valle. Hay puntos del agua en los que la cresta de una onda coincide siempre con el valle de la otra, y viceversa; esto da como resultado que en dichos puntos el agua no se mueve: es como si por ellos no pasara ninguna onda. Son los puntos que se ven grises en la fotografía de la figura 18; en cambio, en las zonas blancas la altura de la onda resultante es positiva (son zonas de crestas), y las zonas negras representan depresiones en el agua (o sea, valles).







Figura 18. Fotografía de un patrón de interferencia entre las ondas generadas simultáneamente por dos fuentes en el agua.

Para que esta interferencia se dé es necesario que las dos fuentes envíen sus ondas en forma coherente, es decir, que las crestas (o los valles) salgan de sus respectivas fuentes al mismo tiempo (en fase) o con una diferencia de tiempos que se mantenga constante durante toda la emisión; si la fase varía al azar, se destruye la interferencia.

Pues bien, lo mismo sucede con la luz: las ondas de luz emitidas por dos fuentes con fases constantes interfieren, dando lugar a un patrón como el de la figura 15. Recuérdese que en este caso, en lugar de dos fuentes, se usaron dos rendijas por las que pasa la luz emitida por una solamente. La razón de ello es que dos fuentes de luz independientes no producen emisiones coherentes. Cada una de las rendijas actúa como una nueva fuente. Las zonas oscuras son aquellas en las que la onda de una fuente siempre cancela a la de la otra; son las llamadas zonas de interferencia destructiva, en las que la onda resultante siempre es nula. A ésas no llega la luz. Las zonas que aparecen más iluminadas son aquellas en las que siempre coinciden las crestas (o los valles), produciéndose interferencia constructiva.

Ahora regresemos a la cuestión del color de las manchas de aceite. Cuando la luz incide en una capa de aceite, le sucede algo similar a lo que se ilustra en la figura 19: una parte de la luz se refleja en la superficie, y la otra penetra en el aceite, refractándose; de ésta, una fracción se refleja en la superficie del agua, se refracta nuevamente al salir el aire, y así sucesivamente. El resultado es que salen muchos rayos (los rayos 1, 2, 3, 4, etc.) que interfieren entre ellos, porque como emanaron de la misma fuente, viajan en fase. Esta interferencia da lugar a franjas claras y oscuras. ¿Por qué las franjas se ven de distintos colores? Porque como ya dijimos, los diversos colores del espectro se refractan en mayor o menor grado, y entonces las trayectorias de un color difieren de las de otros colores. En consecuencia, se obtiene un patrón de interferencia para cada uno de los colores, y la combinación de todos estos patrones es lo que produce el aspecto irisado de la mancha de aceite.

Con las pompas de jabón sucede algo similar, salvo que en este caso se trata de una delgada capa de agua rodeada de aire por arriba y por abajo (el jabón no tiene propiedades ópticas especiales; se agrega al agua sólo para poder hacer las pompas muy delgadas). El mismo efecto de interferencia da lugar a la iridiscencia de las escamas de algunos peces: estas escamas están cubiertas de una delgada capa de material transparente que da lugar a múltiples reflexiones y refracciones, como las ilustradas en la figura 19.






Figura 19. Trayectorias de la luz que incide en una capa de aceite flotando sobre agua.

Este efecto de interferencia por reflexiones múltiples ha sido aprovechado para la fabricación de materiales con determinadas propiedades ópticas. Suponga, por ejemplo, que el grosor de la capa de la figura 19 es justamente el adecuado para que todos los rayos reflejados interfieran constructivamente: entonces esta capa actúa como un magnífico reflector. Si en cambio el espesor de la capa es tal que los rayos 1, 2, 3, etc. interfieren destructivamente, no hay luz reflejada; se trata de una capa antirreflectora. Por otra parte, si los rayos de determinados colores se suman, pero los de otros se destruyen, la capa actúa como filtro cromático. Las capas necesarias para producir estos efectos son muy delgadas —de diezmilésimos de milímetro—, por lo que suelen aplicarse sobre soportes de vidrio o sobre las lentes de los aparatos ópticos.

Otra forma sencilla de producir la interferencia de la luz es mediante el aparato de los anillos de Newton, que consiste simplemente de una lente convexa colocada sobre un vidrio plano, como se ilustra en la figura 20(a). Cuando este sistema es iluminado verticalmente desde arriba, se obtiene una imagen de anillos concéntricos, que son bandas de interferencia (Figura 20(b)). Utilizando luz blanca para iluminar puede obtenerse un patrón de hermoso colorido. En la figura 20(c) se muestra el tipo de imagen que puede resultar cuando el vidrio de abajo no es perfectamente plano o el pulido de la lente no es regular.

Figura 20. Los anillos de Newton. (a) Aparato para producir los anillos.






Figura 20. (b) Fotografía de los anillos.






Figura 20. (c) Patrón que se obtiene cuando alguna de las superficies no está bien pulida.

5. LA POLARIZACIÓN DE LA LUZ

Ahora que hemos aprendido que la luz es un fenómeno ondulatorio se antoja comparar las ondas de la luz con otras que nos son más familiares. Hemos hablado de las ondas sonoras y de las que se forman en una superficie de agua, pero podemos pensar también, por ejemplo, en las que se forman en una cuerda, o en el cuero de un tambor, o en las ondas sísmicas que nos llegan desde el epicentro de un terremoto.

Todas estas ondas tienen propiedades en común, pero también tienen características específicas. En particular, resulta que en algunos casos la perturbación del medio es paralela a la dirección de propagación de la onda; piénsese por ejemplo en el caso del sonido, en que la alteración provocada por la fuente sonora se propaga como una onda de compresión y expansión del aire (Figura 21(a)). Se trata aquí de ondas longitudinales. En otros casos la perturbación del medio es perpendicular a la dirección de propagación de la onda, como sucede, por ejemplo, con las olas en el agua, o con una cuerda que se pone a vibrar (Figura 21(b)). Se trata entonces de ondas transversales.



Figura 21. Ondas longitudinales y transversales. (a) Las ondas sonoras son longitudinales. (b) Las ondas en una cuerda son transversales.

Pues bien, resulta que las ondas de luz son transversales. Y una diferencia importante entre los dos tipos de onda es que las transversales se pueden polarizar, mientras que las longitudinales no. Para entender lo que esto significa, veamos la figura 22, en la que se dejan caer palillos a través de una coladera hecha de hilos paralelos. En el caso (a), todos los palillos pasan, pero en el caso (b) sólo aquellos que están orientados en la dirección de los hilos. Podemos decir entonces que esta coladera es como un polarizador, porque del conjunto de palillos que le llegan con todas las orientaciones posibles sólo deja pasar aquéllos que tienen una determinada orientación.







Figura 22. Polarización de un conjunto de palillos.(a) Los palillos longitudinales pasan todos por la coladera: no hay polarización; (b) de los palillos transversales sólo pasan algunos: el conjunto sale polarizado.

El primer caso de la figura 22 es análogo al de las ondas longitudinales: todas pasan a través del polarizador. El segundo asemeja a las ondas transversales: sólo pasan las ondas paralelas a la rejilla, y como resultado de esta selección éstas salen polarizadas.

En consecuencia, la luz, siendo una onda transversal, puede ser polarizada. A simple vista esto no hace ninguna diferencia; quizá una parte de la luz que usted está recibiendo esté polarizada, pero no lo nota. Pero ahora coloque un polarizador enfrente de sus ojos; entonces sí va a observar alguna diferencia. Es como si colocara una coladera que sólo deja pasar una fracción de la luz. Suponga usted que la luz ya venía polarizada antes de incidir en el polarizador; es como si los palillos ya polarizados cayeran sobre una segunda coladera. En particular si los hilos de ésta son perpendiculares a los de la primera coladera, no habrá palillo que pase. Así, dos polarizadores dispuestos en direcciones perpendiculares —o sea, cruzados— no dejan pasar la luz.

En realidad, aunque no nos demos cuenta, mucha de la luz que vemos está polarizada. Para empezar, la luz del Sol no llega parcialmente polarizada, por efecto de las moléculas del aire; además, la luz azul viene más polarizada que la roja. Curiosamente, los ojos de las abejas sí están provistos de un mecanismo para detectar la polarización, y esto les sirve aun en días nublados para orientarse y regresar a su panal.

También la luz reflejada por una superficie no metálica se polariza parcialmente. Por ejemplo, los reflejos que recibimos del agua y de los vidrios vienen polarizados. Por ello, usando anteojos polarizadores podemos eliminar en buena medida los reflejos, lo cual nos permite ver mejor las imágenes no reflejadas..., siempre y cuando la orientación del polarizador esté escogida adecuadamente.

Algunos cristales, como el cuarzo, la calcita y la turmalina, tienen la capacidad de polarizar la luz, gracias a una propiedad muy curiosa: estos cristales tienen dos índices de refracción. Esto significa que un solo haz incidente es refractado por el cristal de dos maneras, por lo que salen dos haces separados y se forman dos imágenes (Figura 23). Cada una de éstas está hecha con luz polarizada. Si usted tiene oportunidad de conseguir un trozo de cristal birrefringente podrá ver la formación de las dos imágenes, y si tiene anteojos polarizadores a su alcance observe usted cómo puede hacer aparecer y desaparecer cada una de las dos imágenes al girar los anteojos.





Figura 23. Un cristal birrefringente separa el rayo incidente en dos rayos (a),
dando así lugar a dos imágenes (b).

Hay muchos materiales, naturales y artificiales, que pueden afectar la polarización de la luz. El polaroid, que es un material sintético, está hecho de largos y diminutos cristales que contienen yodo, alineados y embebidos en una hoja de plástico. Al atravesar el polaroid, la luz se polariza en la dirección de estos cristales.

Un bello ejemplo de uso de la polarización se muestra en la figura 24: un objeto prácticamente transparente se vuelve visible cuando es colocado entre dos polarizadores, porque las sustancias de las que está hecho modifican la polarización de la luz que lo atraviesa. Usted puede observar este fenómeno al introducir un trozo de celofán arrugado entre dos polarizadores; los diversos colores de la imagen dependen del grosor de las capas de celofán y de la orientación relativa de los dos polarizadores. Si estira usted el celofán, puede llegar a percibir los efectos de la tensión sobre la estructura del material. En efecto, la polarización de la luz se usa de esta manera como herramienta para detectar tensiones en los componentes de una estructura.







Figura 24. Una araña vista a través de un microscopio de luz polarizada. La araña está colocada entre dos polarizadores.

NOTAS

*Nótese que el mismo término dispersión se ha empleado en las secciones 2 y 3 para describir dos fenómenos diferentes. Ésta es una connotación del español local, que esperamos no confunda al lector. Al fenómeno descrito en esta sección se le llama difusión en España, y scattering en los países de habla inglesa.

ÍndiceAnteriorPrevioSiguiente