PRÓLOGO

En la vida cotidiana, la materia que nos rodea se nos presenta en sus tres diferentes fases: la gaseosa, la líquida y la sólida. También nos es bien conocido el hecho de los cambios que pueden darse entre ellas. En efecto, los gases pueden licuarse, los líquidos solidificarse, y recíprocamente, un sólido puede fundirse para dar un líquido y éste a su vez puede evaporarse para formar un gas. Todos estos cambios parecen sugerir que, de no existir un agente externo que los provoque, la materia se encontraría invariablemente en sólo una de dichas fases. Usualmente, si queremos evaporar un líquido hay que calentarlo: a un gas comprimirlo para licuarlo; a un líquido enfriarlo para solidificarlo. Por lo menos, sabemos que si llevamos a cabo esas operaciones, el proceso correspondiente ocurre con mayor rapidez.

Lo que ya no es accesible en el examen de tales fenómenos a través de nuestros sentidos, es saber por qué ocurren. ¿Cuáles son las propiedades características de cada una de estas fases en términos de las partículas o entes que constituyen a la materia?; ¿somos capaces de explicar y, por consiguiente, de entender cómo y por qué ocurren los fenómenos arriba descritos?; ¿es tan estática, tan reposada la imagen que nos proyecta la superficie de un lago visto a distancia?; ¿o la que proyecta un vaso con agua colocado sobre una mesa?

Como es bien sabido por todos, la vieja hipótesis de los filósófos griegos en la cual se aseveraba que la materia está formada por pequeñas partículas indivisibles llamadas átomos ha sido plenamente confirmada. Hoy en día tenemos pruebas fehacientes de que la materia que nos rodea está constituida por átomos y familias de ellos llamadas moléculas. Las leyes que gobiernan el comportamiento de los átomos y las moléculas también nos son conocidas. Este conocimiento es uno de los grandes avances de la física y la química del siglo xx. De este avance ha surgido un gran reto: el poder establecer una relación entre las características, llamémoslas macroscópicas, de la materia y las características de las partículas microscópicas de que está formada. ¿Qué hemos logrado hacer y aprender al respecto?

Cuando examinamos el comportamiento de una muestra de la materia, usualmente nos referimos a una cantidad de ella formada o constituida por un número enorme de átomos o moléculas. Basta recordar que a condiciones normales de temperatura y presión, un litro de un gas contiene aproximadamente trillones y trillones de moléculas. El puente a que nos hemos referido antes entre el mundo microscópico y el macroscópico implica pues establecer relaciones entre las propiedades de un sistema, sea gas, líquido o sólido, como lo son la presión, la temperatura, la densidad y otros atributos accesibles a nuestros sentidos, y las propiedades de las moléculas que constituyen al sistema. Una de las ramas de la fisicoquímica contemporánea que se ocupa de este estudio es la llamada teoría cinética de la materia.

En este libro mostraremos al lector cómo, sin hacer uso de ninguna herramienta matemática fuera de la aritmética elemental, la teoría cinética permite interpretar a los fenómenos macroscópicos que hemos mencionado antes y otros más, en términos del comportamiento de las moléculas que constituyen a la materia. Un rasgo fundamental de esta interpretación es la necesidad que se pone de manifiesto, debido a la complejidad del problema, de utilizar modelos moleculares. Dichos modelos se caracterizan por emplear un cierto número de hipótesis tendientes a simplificar el comportamiento de poblaciones tan desmesuradamente grandes de moléculas a manera de poder extraer de ellas los rasgos generales que puedan ser comparados con los valores de las propiedades macroscópicas capaces de ser obtenidas experimentalmente. La fidelidad de un modelo para describir este comportamiento macroscópico podrá juzgarse en la medida de la precisión con la cual sus predicciones coincidan con las observaciones realizadas en el laboratorio.

El éxito de la teoría cinética radica en que, utilizando hipótesis relativamente simples, ha logrado crear modelos que concuerdan acertadamente con el comportamiento en grueso de la materia. Ello no quiere decir que todas las manifestaciones de ésta se han podido explicar a satisfacción pero, como el lector podrá juzgar por sí mismo, los rasgos generales de la mayoría de los fenómenos que observamos cotidianamente pueden interpretarse de manera simple en términos de modelos moleculares. No obstante, es importante señalar que, aun hoy en día, esta rama de la ciencia es un fecundo campo de investigación en el cual se intenta despejar una variedad no despreciable de incógnitas.

ÍndiceAnteriorPrevioSiguiente