XXII. ¡POR FIN, LAS ONDAS GRAVITACIONALES!

VIMOS antes que las tres pruebas clásicas de la relatividad general involucran efectos minúsculos; de ahí que requieran mediciones muy precisas, no siempre factibles con los equipos experimentales con que en su momento cuentan los físicos. El corrimiento del perihelio de Mercurio requiere acumularse durante todo un siglo para ser apreciable; la pequeñísima desviación de la luz al pasar cerca del Sol necesitó un eclipse y una conjunción de estrellas; el corrimiento hacia el rojo hubo de esperar más de cuarenta años a que los experimentadores contaran con la nueva arma provista por el efecto Mössbauer. Los minúsculos efectos de la teoría general de la relatividad son, pues, difíciles de formular y, si cabe, más difícil resulta aún medirlos con la precisión adecuada.

A pesar de ello, otras tres consecuencias de la teoría de Einstein pueden ponerse a prueba: el retraso temporal de los ecos del radar, la existencia de hoyos negros y las ondas gravitacionales. Habría, además, otros efectos relativistas de carácter cosmológico; de ellos no nos ocuparemos aquí, pues nos alejaríamos del objetivo principal de este relato.

Cuando tratamos la desviación de la luz al pasar cerca del Sol, mencionamos que aquélla se curvaba siguiendo una geodésica en el espaciotiempo. Esto implica que la luz se retrasa al pasar junto a un objeto masivo. Si pudiéramos enviar radiación electromagnética desde la Tierra a otro planeta y observar su eco, lograríamos medir el tiempo de viaje. En diferentes posiciones relativas de ese planeta, la radiación pasaría a veces cerca, a veces lejos del Sol. Según Einstein, en el primer caso debería haber un retraso temporal que puede calcularse. El máximo valor se tendría cuando la Tierra, el Sol y el planeta estuvieran alineados y con el astro en medio de los dos planetas. Si consideramos a Venus, la luz toma en el viaje de ida y vuelta a la Tierra cerca de media hora; el retraso, temporal máximo sería de 200 microsegundos, es decir, una parte en 10 millones. Una vez más, nos hallamos frente a un pequeñísimo efecto que requiere, sin duda, de técnicas experimentales muy delicadas y de observaciones muy precisas.

A principios de los setentas, Shapiro uso el eco del radar sobre el planeta Venus para comprobar, por cuarta vez, las predicciones de la teoría general de la relatividad. Ello requiere conocer las distancias importantes con errores que no excedan de unos cuantos kilómetros. Tomada en cuenta la distancia astronómica entre la Tierra y Venus, lo anterior exige conocer las órbitas planetarias y aun la topografía de Venus con un detalle nunca antes alcanzado. A pesar de lo difícil de esta empresa, el esfuerzo se hizo y las mediciones del retraso temporal, cuyo error no excede unos pocos microsegundos, concuerdan espectacularmente con lo predicho por la teoría einsteniana. He aquí, pues, una cuarta prueba experimental de la gravitación relativista.

Pasemos ahora a discutir someramente esos nuevos objetos del universo, que posiblemente existan y que captan la atención de todos los amantes de la ciencia ficción hecha ciencia: los hoyos negros. Ya Laplace, el gran físico y matemático francés, sospechaba de su existencia: "...a consecuencia de su atracción, ese cuerpo no permitiría a ninguno de sus rayos escapar; es pues posible que los cuerpos luminosos más grandes del universo fueran, por esta causa, invisibles." Sin embargo, con la teoría de Einstein la existencia de estos cuerpos muy masivos —que no dejan escapar la luz, que curvan abruptamente el espaciotiempo, que ninguna información puede librarse de su influencia, que no se ven pues son negros— adquiere una nueva perspectiva.

Si usamos coordenadas polares (r, q), el intervalo en el espaciotiempo se escribe así: ds 2 = c2 dt2 - dr2 - r2 dq2

En presencia de una masa m, el espacio tiempo se curva , aparece un tensor métrico gun diferente que corresponde a un tensor de curvatura no nulo. En tal caso, Einstein nos dice que la fórmula anterior ha de modificarse y que ahora debe ser ds2= g (r) c2 dt2 - (dr2 /g (r)) - r2 dq2, donde la función g lo es sólo de la distancia r a la masa m y vale g (r) = 1 - (2GM/c2r). Cuando 2 GM/c2r es igual a 1, g se hace cero y la métrica contiene infinitos, se vuelve singular como dicen los matemáticos. A este valor de r,RS, se le conoce como el radio de Schwarzschild, y define un volumen del cual no puede salir la luz o ente alguno. Si m f uera la masa del sol, RS valdría tres kilómetros y la densidad de este cuerpo sería inimaginablemente alta. Por ello, durante mucho tiempo no se tomó totalmente en serio a estos hoyos negros. No obstante, desde los sesentas empezaron a descubrirse nuevos objetos en el cielo. En 1967 se vio el primer pulsar que emite ondas de radio con gran regularidad. Se concluyó pronto que estos pulsares eran estrellas de neutrones, con masas del orden de la solar y una decena de kilómetros de radio, y que resultaban del colapso gravitacional de una estrella normal, cuando ésta moría al haber gastado su combustible nuclear. Tales objetos ya no estaban muy lejos de uno que cumpliera con la condición de Schwarzshild. El hoyo negro aparecía en lontananza...

Aunque el hoyo negro no puede verse, sus efectos sí son detectables. Supongamos que un hoyo negro forma una pareja con una estrella normal; por su gran atracción gravitatoria, el hoyo negro extrae materia de su estrella compañera. Ello produce fuertes emisiones de rayos X, que son característicos y que bien podrían ser la señal de que el hoyo negro anda por ahí. Muchos astrónomos creen que tales condiciones se dan en ciertas fuentes conocidas de rayos X, como la Cygnus X-1. Más aún, muchos piensan que existen hoyos negros gigantescos en el centro de las galaxias pues, según las teorías astronómicas modernas, suponiéndolos se explicarían varias observaciones, como los chorros de gas ionizado que vemos en las radiogalaxias. Tal vez pronto sabremos si estos cuasares son también hoyos negros.

Los hoyos negros podrían formarse cuando una estrella muy masiva termina su evolución, después de haber explotado como una supernova. La formación de un hoyo negro supone, pues, enormes aceleraciones de masas muy grandes. Deberían, según Einstein, generarse entonces pulsos enormes de ondas gravitacionales. Esta ilusión de la física moderna no ha podido convertirse en realidad. Igual que el monopolo magnético o los cuarks, las ondas gravitacionales no han sido descubiertas aún. Sin embargo, casi ningún físico duda de su existencia y por ello las continúan buscando.

Toda teoría relativista de cualquier campo de fuerzas físico predice la existencia de ondas. El electromagnetismo requiere de ondas como la luz, y la gravitación relativista tiene sus propias ondas. No es difícil entender por qué, cuando nos damos cuenta de que la relatividad prohibe la transmisión instantánea de señales. En el caso electro-magnético, por ejemplo, los campos pueden ser independientes del tiempo sólo si las cargas están en reposo o se mueven con velocidad uniforme. En la última afirmación está oculta la hipótesis de que la partícula ha permanecido en su estado de movimiento desde siempre y para siempre. Cualquier perturbación a él, es decir, cualquier aceleración que sufran las cargas ha de propagarse con velocidad finita, en forma de pulso que viaja con la velocidad de la luz c. Este es el origen de las ondas electromagnéticas que se producen cuando aceleramos una carga eléctrica. Tales ondas surgen de inmediato de una teoría relativista de los campos eléctricos y magnéticos, como es la de Maxwell. De sus ecuaciones emerge la ecuación de ondas y de ahí las importantes consecuencias tecnológicas que todos atestiguamos día con día.

Como las ecuaciones de campo de Maxwell llevan a la existencia de ondas electromagnéticas, así las ecuaciones de campo de Einstein predicen las ondas gravitacionales. Las primeras implican oscilaciones de los campos eléctricos y magnéticos, las gravitacionales son alteraciones de la geometría del espaciotiempo. Cuando una carga eléctrica se acelera se produce un pulso de luz, un chorro de fotones. En igual forma, al acelerar una masa, fuente del campo gravitacional, se produce un pulso de ondas gravitacionales, un chorro de gravitones. A semejanza de las electromagnéticas, las ondas de Einstein llevan con una velocidad c la información de que algo ha ocurrido; c es la máxima velocidad permitida. Pero a diferencia de las ondas de luz, las gravitacionales son muy débiles. Esto se debe a que la fuerza gravitacional es mucho menos intensa que la eléctrica, como sabemos, pues la constante de la gravitación universal G es pequeñísima. Por ello, habrá que esperar a que masas enormes sufran aceleraciones gigantescas, como en la formación de un hoyo negro, para poder detectar esas ondas gravitacionales.

Aparte de su debilidad relativa, existe una diferencia más entre los dos tipos de ondas. En el caso eléctrico podemos generar ondas periódicas haciendo oscilar una carga positiva y una negativa en fase opuesta, una contra la otra; esto es lo que llamamos la radiación dipolar. El dipolo, conjunto de dos cargas de signo opuesto, es el radiador electromagnético básico. Empero, la gravitación es diferente, pues no hay masas de signo opuesto. Aunque no sepamos por qué, el principio de equivalencia impone masas de un solo signo. No es posible, en consecuencia, producir un dipolo oscilante que radie ondas gravitacionales. Según se deduce de la teoría einsteniana, el radiador básico es ahora lo que se conoce como un cuadrupolo. (En el lenguaje cuántico, tal diferencia entre los dos tipos de ondas se expresa así: los cuantos de luz, los fotones, tienen espín h/2p, donde h es la constante de Planck; los cuantos de la onda gravitacional, los gravitones, por su parte, tienen espín 2(h/2p), el doble del fotón.)

Es interesante, llegados a este punto, mencionar que los físicos no se han dormido en sus laureles desde 1916, cuando Einstein publicó su teoría general de la relatividad. Muchas otras ideas sobre la gravitación han generado otros científicos; algunas de estas teorías predicen efectos distintos a la de Einstein. En particular, se cree hoy que toda teoría relativista de la gravitacion debe ser una teoría métrica, es decir, que sus ecuaciones deben caracterizar gmn. Se conocen varias de estas teorías métricas, además de la general de la relatividad. En cuanto a las ondas gravitacionales, sólo la última lleva a la conclusión de que el cuadrupolo es el radiador básico. Por ello, resulta de la mayor importancia detectar las ondas gravitacionales, pues con ello sabríamos cuál idea sobre la gravedad, de las varias hoy posibles, se acerca mas a lo que observamos.

Con estos preámbulos, relatemos los esfuerzos recientes para detectar las ondas de Einstein, esfuerzos que son herederos directos de los que Weber y sus colaboradores realizaron hace ya veinte años, cuando creyeron detectar por primera vez las ondas gravitacionales. Por cierto, todavía hoy no sabemos con certeza cuál fue el fenómeno que Weber observó.

ÍndiceAnteriorPrevioSiguiente