I. ¿QUÉ ES LA SUPERCONDUCTIVIDAD?

HISTORIA

EL DESCUBRIMIENTO de la superconductividad es uno de los más sorprendentes de la historia de la ciencia moderna. Está íntimamente ligado con el interés de los físicos del siglo XIX en licuar todos los gases conocidos en aquel tiempo. Era ya bien sabido que la inmensa mayoría de los gases sólo podrían licuarse a temperaturas muy por debajo de cero grados centígrados. La licuefacción de los gases permitiría estudiar los fenómenos que se presentan en los materiales a temperaturas muy bajas.

Un par de años antes de la guerra de EUA contra México, esto es, en 1845, Michael Faraday de la Royal Institution de Londres pudo, finalmente, perfeccionar una técnica para licuar gases que 23 años antes había encontrado en forma accidental. Sin embargo, esta técnica no resultaba fácil para la licuefacción del helio (He), del hidrógeno (H), del oxígeno (O2), del nitrógeno (N2), del metano (CH4), del monóxido de carbono (CO), ni del óxido nítrico (NO), que eran los únicos gases que faltaban por licuar de todos los que se conocían en aquella época y, en consecuencia, tampoco el aire había sido licuado. Sin embargo, para 1867 el francés Luis Cailletet fue el primero en licuar oxígeno (90.2K o -182.96ñC) y realizar descubrimientos que mostraron la posibilidad de licuar el aire, que a la postre dieron origen al método que permitió licuar de manera sencilla y adecuada el gas helio.

En el mismo año de 1877, y siguiendo un método diferente del de Cailletet, el suizo Raoul Pictet también pudo licuar oxígeno. Para 1898, James Dewar de la Royal Institution de Londres pudo licuar hidrógeno, que tiene una temperatura de ebullición de 20.8K, que corresponde aproximadamente a -252.36ñC.

Fue diez años después, en 1908, cuando Heike Kamerlingh Onnes pudo, por primera vez en el mundo, obtener helio líquido que tiene una temperatura de ebullición de 4.22K, recuérdese que el cero absoluto equivale a -273.16ñC. Este logro se realizó en la universidad de Leyden, Holanda y abrió el paso a Onnes para su descubrimiento de la superconductividad.



Figura 1. Heike Kamerlingh Onnes. Descubridor de la superconductividad en 1911.

Con el helio líquido Kamerlingh Onnes pudo ya disponer de un baño térmico a muy bajas temperaturas y se dispuso a investigar las propiedades de la materia a esas temperaturas. Seleccionó, como uno de los temas de sus investigaciones a bajas temperaturas, el comportamiento de la resistividad eléctrica de los metales. Esto se debió a que la medición de esta propiedad se puede realizar con relativa facilidad a cualquier temperatura y, también, a que el tema de la resistividad eléctrica de los metales era, ya en aquel tiempo, de considerable importancia.

Las teorías existentes en esos tiempos sobre la resistividad eléctrica de los metales se encontraban en un estado bastante rudimentario. Se pensaba que eran probables cualquiera de las tres posibilidades mostradas en la figura 2 para el comportamiento de la resistividad al disminuir la temperatura.



Figura 2. Comportamientos posibles del valor de la resistividad eléctrica de un metal al disminuir su temperatura, de acuerdo con las ideas prevalecientes alrededor de 1908.

Se decía que la curva A de la figura 2 ocurriría si la resistencia eléctrica se debía completamente a la dispersión que los electrones sufrían por las vibraciones de la red atómica. Se esperaba que la curva B pudiera ocurrir si las dispersiones de los electrones por las impurezas que estuvieran presentes fuesen importantes. La curva C se produciría si los electrones de conducción, esto es, los electrones libres de moverse por el metal, disminuyeran rápidamente al disminuir la temperatura. Esto último sería posible, se pensaba, si al disminuir la temperatura, y con ella la energía de movimiento de los electrones, éstos pudieran ir quedando atrapados alrededor de los iones en el metal.

Kamerlingh Onnes se dispuso a averiguar, por medio de la experimentación, cuál era la verdadera variación de la resistividad con la temperatura. Para comenzar, decidió examinar la primera hipótesis. Para esto seleccionó el mercurio para estudiarlo, porque era el metal más puro que podía obtenerse en esa época. Cuando observó que la resistividad eléctrica del mercurio a una temperatura inferior a 4.22K era menor, por un factor de 10-11, que su valor correspondiente a una temperatura un poco arriba de 4.22 K, pensó que había verificado la validez de la hipótesis A de la figura 2.

Investigaciones posteriores le mostraron a Onnes que la resistividad no disminuía de manera continua, como se indica en la curva A de la figura 2, sino que desaparecía muy abruptamente a una temperatura de 4.15K. Por otro lado, también observó que este comportamiento no se alteraba al introducir impurezas en la muestra de mercurio. Bien pronto se dio cuenta de la existencia de un nuevo estado del mercurio, en el cual no había resistividad eléctrica. A este nuevo estado lo llamó estado superconductor. Así nació el estudio de los superconductores.

LOS MATERIALES SUPERCONDUCTORES

La transición del estado normal al estado superconductor puede ser tan bien marcada como que el cambio tenga lugar en un intervalo de un diezmilésimo de 1 K. En el cuadro 1 se muestra un conjunto de materiales superconductores con sus correspondientes temperaturas de transición.

Nótese el enorme salto en el valor de Tc cuando empezaron a prepararse aleaciones con tierras raras (como el itrio), con cobre y oxígeno.

Hay algunas características de los materiales superconductores del tipo metálico (primera parte del cuadro 1, que no cambian con la transición al estado superconductor, entre ellas podemos señalar las siguientes:

1) El patrón de difracción de los rayos X no cambia. Esto indica que no hay cambio en la simetría de la red cristalina. Tampoco hay cambio en la intensidad del patrón de difracción, lo que indica que prácticamente no hay cambio en la estructura electrónica.

2) No hay cambio apreciable en las propiedades ópticas del material, aunque éstas están usualmente relacionadas con la conductividad eléctrica.

3) En ausencia de un campo magnético aplicado sobre la muestra, no hay calor latente en la transición.

4) Las propiedades elásticas y de expansión térmica no cambian en la transición.

Por otro lado, hablando de los materiales de la primera parte del cuadro 1, hay algunas propiedades que cambian en la transición al estado superconductor como: a) Las propiedades magnéticas (que cambian radicalmente). En el estado superconductor puro prácticamente no hay penetración de flujo magnético en el material; b) el calor específico, que cambia discontinuamente a la temperatura de transición. En presencia de un campo magnético se produce también un calor latente de la transformación; c) todos los efectos termoeléctricos desaparecen en el estado superconductor, y d) la conductividad térmica cambia discontinuamente cuando se destruye la superconductividad en presencia de un campo magnético.

CUADRO 1.

Sustancia
Temperatura crítica (K)

W ( wolframio )
~0.01
Ir ( iridio )
0.014
Ti ( titanio )
0.39
Ru ( rutenio )
0.49
Zi ( zirconio )
0.55
Cd ( cadmio )
0.56
Os ( osmio)
0.66
U ( uranio )
0.68
Zn ( zinc )
0.88
Mo ( molibdeno )
0.92
Ga ( galio )
1.09
Al ( aluminio )
1.19
Th ( toi-io )
1.37
Re ( renio )
1.70
In ( indio )
3.40
Sn ( estaño )
3.72
Hg ( mercurio )
4.15
Ta ( tantalio )
4.48
V ( vanadio )
5.30
La ( lantano )
5.91
Pb ( plomo )
7.19
Tc ( tecnecio )
8.20
Nb ( niobio )
9.46

Aleación
 

V3 Ga
15.00
V3 Si
17.10
Nb3 Sn
18.30
Nb3 Al
18.80
Nb3 Ga
20.30
Nb3 Ge
23.30
Ba La4 Cu5 O13.4
35.00
YBa2 Cu3 O7
90.00
YBa4 Cu5 Ox
98.00
Tl2 Ba2 Ca Cu2 O8
99.00
Bi2 Sr2 Ca2 Cu3 O10
110.00
Tl2 Ba2 Ca2 Cu3 O10
125.00
Hg Ba2 Ca2 Cu3 O8+x
133.00



La clase de aleaciones que se señalan en los últimos lugares del cuadro 1 son del tipo cerámico y de reciente descubrimiento. No se esperaba que materiales de este tipo pudieran tener temperaturas de transición al estado superconductor tan elevadas. Por ello es que no se habían explorado con anterioridad. A principios de 1987 comenzó a informarse sobre temperaturas de transición tan altas como las mostradas al final del cuadro 1, a partir del compuesto cerámico BaLa4 Cu5 O13.4, que había sido sintetizado y dado a conocer en 1986. Estos nuevos materiales son bastante complicados, en su estructura y propiedades. Su estudio y comprensión se ha ido realizando con bastante dificultad desde su descubrimiento. Aún, no se entiende claramente cómo ocurre la transición al estado superconductor. Hay indicios de que es posible lograr una temperatura de transición aún más elevada que las indicadas en el cuadro 1. Parece ser que el oxígeno desempeña un papel crucial en la aparición del estado superconductor y en el alto valor de la temperatura crítica, junto con el cobre. También se empieza a tener la certeza de que el efecto de dimensionalidad es muy importante. Esto quiere decir que en estos materiales los fenómenos dominantes para la superconductividad ocurren en dos dimensiones. Este espacio bidimensional corresponde a las capas de la estructura del material donde se encuentran el cobre y el oxígeno.

La obtención de este tipo de materiales superconductores se inició en Suiza, China y EUA, la tecnología que implica su preparación es sencilla y está al alcance de los países del llamado Tercer Mundo, esto es, países que, cómo México, no tienen gran desarrollo industrial. Sin embargo, la investigación relacionada con la creación de nuevos materiales cerámicos superconductores de una temperatura de transición al estado superconductor cada vez más alta requiere una gran inversión y un esfuerzo conjunto y coordinado de científicos de diversas especialidades. Esta conjunción y coordinación de esfuerzos es difícil de lograr en nuestro país por el número relativamente bajo de científicos que tenemos.



Figura 3. Heike Kamerlingh Onnes en su laboratorio, frente a su licuefactor de helio

En el Instituto de Investigaciones en Materiales y en el Instituto de Física, ambos de la Universidad Nacional Autónoma de México, se ha logrado la preparación de estos materiales muy poco después de su descubrimiento. Sin embargo, a diez, años de este importante hallazgo, muy pocos investigadores en México permanecen trabajando en este campo. Las investigaciones en la aplicación de estos materiales ni siquiera se iniciaron (salvo por unos pocos casos de esfuerzos individuales que no han podido continuarse), a pesar de que el universo de las aplicaciones tecnológicas de los superconductores es amplísimo, como veremos con detalle más adelante.

SUS DIFERENCIAS

Existen diferencias importantes entre los superconductores que permiten clasificarlos en dos grandes grupos. Ciertos metales; en particular los que tienen bajas temperaturas de fusión y son mecánicamente suaves y de fácil obtención en un alto grado de pureza y libres de esfuerzos mecánicos internos, exhiben semejanzas en su comportamiento en el estado superconductor. Estos materiales superconductores reciben el nombre de superconductores ideales, superconductores Tipo I, o suaves.

Por otro lado, el comportamiento de muchas aleaciones y de algunos de los metales superconductores más refractarios es complejo e individual, particularmente con respecto a la forma cómo resultan afectados en el estado superconductor en presencia de un campo magnético. A estos superconductores se les ha dado el nombre de superconductores Tipo II, o si la superconductividad se conserva aun bajo la influencia de campos magnéticos intensos, se les conoce con el nombre de duros o de campo intenso.

Para entender mejor estas diferencias, veamos cómo un campo magnético aplicado afecta a cada uno de los tipos de superconductores que hemos mencionado. Para ello describiremos brevemente lo que es el efecto Meissner-Oschenfeld.

En 1933, W. Meissner y R. Oschenfeld encontraron experimentalmente que un superconductor se comporta de manera tal que nunca permite que exista un campo de inducción magnética en su interior. En otras palabras, no permite que un campo magnético penetre en su interior. El campo magnético en el interior de un superconductor no sólo está congelado, sino que vale siempre cero.

Una consecuencia inmediata de lo anterior es que el estado de magnetización del material que pasa por la transición superconductora no depende de los pasos que se hayan seguido al establecer el campo magnético. Esta consecuencia marca también la diferencia fundamental entre lo que es un conductor perfecto y lo que es un superconductor. Por conductor perfecto entendemos un material cuya resistencia eléctrica es igual a cero. En tanto que un superconductor, además de presentar resistencia cero, presenta también el efecto Meissner-Oschenfeld. Se puede demostrar fácilmente que, en un conductor perfecto, el campo magnético tiene un valor constante, esto es, está congelado en su interior, pero no necesariamente vale cero, y esto trae como consecuencia que su estado de magnetización dependa necesariamente de los pasos, que se hayan seguido para magnetizarlo.

Para entender más claramente la diferencia entre un conductor perfecto y un superconductor; veamos qué ocurre cuando tratamos de magnetizar un conductor perfecto y cuando tratamos de magnetizar un superconductor.

Consideremos primero al conductor perfecto, esto es, pensemos que la transición nos lleva únicamente a un estado de resistencia cero sin el efecto Meissner-Oschenfeld.



Figura 4. Penetración del campo magnético B, en el interior de un material considerado solamente como conductor perfecto (es decir que sólo presenta resistencia eléctrica igual a cero, pero no el efecto Meissner), al pasar por la temperatura de transición.



En ausencia de campo magnético externo, tomemos la muestra a una temperatura T mayor que la temperatura de transición., Tc al estado de resistencia cero del conductor perfecto (figura 4(a)). Luego, enfriemos la muestra a una temperatura T < Tc , e introduzcamos un campo magnético (figura 4(b)). Como en el instante en que ocurrió la transición al estado de conductor perfecto el campo magnético en el interior de la muestra era cero, permanecerá con ese valor y, por tanto, el campo magnético será excluido del interior de la muestra. Finalmente, suprimamos el campo magnético aplicado, manteniendo la temperatura por debajo de Tc (figura 4(c)). Obtendremos que el campo magnético en el interior de la muestra sigue siendo cero.

Ahora tomemos la muestra nuevamente a una temperatura T > Tc pero con un campo magnético externo aplicado distinto de cero (figura, 4(d)). Después, enfriemos la muestra a una temperatura T < Tc (figura 4(e)). El campo magnético en el interior de la muestra sigue siendo el mismo que había antes de enfriarla. Finalmente, suprimamos el campo magnético, aplicado (figura 4(f)). Lo que ahora ocurre es que se generan corrientes superficiales en la muestra de tal modo que el campo en el interior de ella tenga el mismo valor que tenía antes de bajar la temperatura a T < Tc .

Por lo anterior podemos afirmar que si la transición nos llevara simplemente a un conductor perfecto (esto es, a la ausencia del efecto Meissner-Oschenfeld en la transición), el estado de magnetización de la muestra dependerá de la manera en que se alcance el estado final.

Ahora consideremos que la transición, además de llevar la muestra a un estado de resistencia eléctrica cero, nos indica la existencia del efecto Meissner-Oschenfeld.



Figura 5. Penetración del campo magnético, B, en el interior de un material que es un superconductor (es decir, que presenta resistencia eléctrica igual a cero y además el efecto Meissner), al pasar la temperatura de transición.

Primeramente, tomemos la muestra a una temperatura T > Tc sin la presencia de un campo magnético aplicado (figura 5(a)). Después, enfriemos la muestra hasta T < Tc e introduzcamos un campo magnético, como se indica en la figura 5(b). Por el efecto Meissner-Oschenfeld se inducirán corrientes superficiales en la muestra de manera tal que el campo en su interior sea cero. Posteriormente, suprimamos el campo magnético aplicado (figura 5(c)). Las corrientes superficiales desaparecen y el campo magnético en el interior de la muestra es cero.

Intentemos ahora el otro camino. Tomemos la muestra a una temperatura T > Tc en presencia de un campo magnético aplicado, como se ve en la figura 5(d). Después, enfriemos la muestra hasta una temperatura T < Tc (figura 5(e)). Tendremos que, por el efecto Meissner-Oschenfeld, se inducirán corrientes superficiales en la muestra de manera que el campo en el interior de ella sea cero. Posteriormente, suprimamos el campo externo (figura 5(f)); Tendremos que las corrientes superficiales desaparecen y que el campo magnético en el interior de la muestra vale cero.

Como acabamos de ver, debido al efecto Meissner-Oschenfeld, el estado de magnetización de la muestra no depende de la manera en que se llegue al estado final.

Es claro que un superconductor es, además de un conductor perfecto, una sustancia en un estado en el que se presenta el efecto Meissner-Oschenfeld.



Figura 6. Walter Meissner. Descubridor del efecto que lleva su nombre en los superconductores.

Es necesario señalar que, si bien existe una clara diferencia entre lo que es un superconductor y un conductor perfecto, los únicos conductores perfectos que se han encontrado hasta ahora en la naturaleza son, precisamente, los superconductores. Aún no se descubren conductores perfectos solamente, es decir, materiales con resistencia cero y sin que presenten el efecto Meissner-Oschenfeld.

InicioAnteriorPrevioSiguiente