VII. CORROSIÓN EN SUELOS

EL TERRENO o suelo por su contenido variable de humedad, sales y materia orgánica en descomposición es el electrolito más complejo de todos los que se pueden encontrar.

Por necesidades mecánicas, económicas y de seguridad, la industria tiene que apoyar sobre él y enterrar numerosas y muy variadas estructuras de acero, las cuales se ven sometidas a un proceso de corrosión que en algunos casos puede ser complicado.

Para tener un buen control de la corrosión de estas estructuras se han de combinar los dos tipos de protección a nuestro alcance: un buen recubrimiento pasivo, complementado por un sistema de protección catódica adecuado. Confiar la protección anticorrosiva de una estructura enterrada solamente a la protección catódica, puede hacerse, pero será siempre antieconómico si la estructura no es de dimensiones pequeñas.

El suelo generalmente es un medio heterogéneo en donde se dan muchas variaciones en la velocidad de corrosión de los metales. Un suelo natural contiene los siguientes elementos: arena, arcilla, cal y humus. Estos componentes pueden estar mezclados en el suelo en diferentes proporciones que darán lugar a distintos grados de agresividad.

Por lo general, los suelos arenosos, margo-arenosos, margo-calcáreos y calcáreos no son agresivos; los suelos arcillosos en algunas condiciones son agresivos. Los que son agresivos de por sí son las turbas, los humus libres de cal y también los suelos cenagosos y de aluvión.

Los suelos artificiales, esto es los formados por escorias y basuras, elementos en putrefacción y residuos humanos e industriales también son agresivos.

CAUSAS DE CORROSIÓN EN TUBERÍAS ENTERRADAS. ESTUDIO DE LA AGRESIVIDAD DEL SUELO. CORROSIÓN ANAEROBIA

Si el oxígeno atmosférico no puede penetrar el suelo, es frecuente el caso en suelos arcillosos o turbosos, el hidrógeno producido a consecuencia de la reacción catódica en la estructura enterrada puede llegar a ser eliminado (oxidado) por una acción microbiana. Este proceso es el resultado de la actividad metabólica de un microorganismo (la bacteria Sporovibrio desulfuricans) que se desarrolla en ausencia completa de oxígeno libre (condiciones anaerobias).

Para oxidar el hidrógeno de estos medios nutritivos orgánicos, esta bacteria no utiliza el oxígeno libre, sino el ion sulfato (SO 2- 4), reduciéndolo a sulfuro (S2-) Uno de los mecanismos más comúnmente aceptados para explicar lo anterior es el siguiente:

4 Fe 4 Fe 2+ + 8 e-  
8 H+ + 8e- 8 H  
S0 2- 4 +8 H S2- +4 H2O  
Fe2+ + S2- FeS } producto de corrosión
3 Fe 2+ + 6 OH- 3 Fe(OH)2


El resultado neto es que la corrosión continúa y se denomina corrosión anaerobia. Los síntomas característicos en las conducciones metálicas enterradas son el ennegrecimiento local del suelo por la formación del sulfuro de hierro y a veces el olor a ácido sulfhídrico.

AGRESIVIDAD DEL SUELO EN FUNCIÓN DE SU RESISTIVIDAD, pH Y POTENCIAL RÉDOX

La velocidad de corrosión está ligada a la resistividad del terreno de la forma que se señala en el cuadro 23.

 

CUADRO 23. Grado de agresividad del suelo en función de la resistividad

La resistividad de un terreno depende, en particular, de su estructura, de las dimensiones de sus partículas constituyentes, de su porosidad y permeabilidad, del contenido de agua (humedad) y de su contenido de iones.

Por ejemplo, en lo que se refiere a un suelo arcilloso, con un 5% de humedad, dicho suelo puede presentar una resistividad de 10 000 ohm-m, en cambio, con un 20% de humedad, la resistividad disminuye hasta 100 ohm-m.

Es obvio, por tanto, que la resistividad de un terreno y especialmente la de los estratos superiores, puede variar notablemente con las estaciones del año, la precipitación pluvial, la actividad agrícola e industrial, etcétera.

En cambio, la temperatura no ejerce una influencia tan marcada, a menos que supere el punto de congelación, después de lo cual hay un aumento significativo de la resistividad.

En lo que se refiere a la acidez, los suelos muy ácidos (pH <5.5) pueden motivar una rápida corrosión del metal desnudo, y la agresividad del suelo aumenta con el incremento de la acidez (disminución del pH), pero estos valores de pH no son normales. La mayor parte de los suelos tienen pH comprendidos entre 5.0 y 8.0, en cuyo caso la corrosión depende de otros factores. En suelos alcalinos parece existir una cierta correlación entre conductividad y agresividad.

En un medio anaerobio es posible predecir la corrosión midiendo el pH y el potencial rédox. Estas medidas permiten establecer las condiciones que favorecen la actividad microbiológica responsable de la corrosión anaerobia. El pH más favorable es entre 5.5 y 8.5 (neutro). En estas condiciones, la medida del potencial rédox efectuada con un electrodo de platino, permite establecer si un terreno está predispuesto al crecimiento de bacterias sulfatoreductoras.

Basándose en los datos reportados en el cuadro 24, es posible determinar la agresividad potencial de un suelo desde el punto de vista del crecimiento de bacterias sulfato-reductoras, lo cual permite establecer una clasificación de los suelos. Por ejemplo, un suelo cuyo contenido en sulfatos sea apreciable y su potencial rédox esté alrededor de +200 mV está en condiciones favorables para que esta corrosión pueda tener efecto. Si en otro terreno se obtiene un valor del potencial rédox de +400 mV, es posible excluir la posibilidad del crecimiento y desarrollo de bacterias anaerobias. Naturalmente existe la posibilidad de que se desarrollen otras familias de bacterias.

 

CUADRO 24. Grado de agresividad del suelo por bacterias sulfato-reductoras en función del potencial rédox

 

Un grupo de bacterias aerobias particularmente dañinas son los tiobacilos (Ferrobacillus ferrooxidans, que son capaces de oxidar el azufre y los sulfuros para convertirlos en ácido sulfúrico.

En el cuadro 25 se presentan unos índices que permiten determinar las características agresivas de un suelo basándose en el contenido de aniones del mismo, cloruros, sulfatos y sulfuros, pH, potencial rédox y resistividad. Este tipo de información resulta de interés para predecir la agresividad de un suelo frente a, por ejemplo, una tubería enterrada y con base en esto, evaluar la corrosión y la protección correspondiente.

 

CUADRO 25. Determinación de la agresividad de suelos

CORROSIÓN POR AIREACIÓN DIFERENCIAL

En cualquier electrolito que se pueda pensar que sea homogéneo existen frecuentemente diferencias en la concentración de aire disuelto. Esta es una causa de corrosión puesta en evidencia por Evans (llamada aireación diferencial o efecto Evans). Si una tubería metálica se encuentra en un terreno donde exista una concentración diferente de oxígeno, la parte menos oxigenada será la zona anódica y por tanto será la que sufrirá los efectos de la corrosión.

Este fenómeno se verá agravado si la tubería, a partir de una cierta longitud, atraviesa terrenos de naturaleza diferente, ya que puede ser muy distinta la permeabilidad al aire en cada uno de sus componentes y por tanto mayores sus diferencias en la concentración de oxígeno (Figura 37).

Figura 37. Corrosión por aireación diferencial. Corrosión de una tubería que atraviesa terrenos de naturaleza diferencial.

CORROSIÓN GALVÁNICA

Este tipo de corrosión tiene lugar cuando se ponen en contacto dos metales diferentes. A veces ocurre que de un conducto principal de acero se sacan conductos derivados en cobre o acero galvanizado; en el primer caso se atacara el acero y en el segundo se disolverá el Zn (del galvanizado) (Figura 38 (a) y (b).

Figura. 38. (a) Corrosión de una conducción principal de acero por la conexión de una derivación de cobre. (b) Disolución del zinc de una tubería de acero galvanizado que ha sido conectada a una conducción principal de acero.

Se puede incluir en este tipo de corrosión el caso de la asociación de un conducto viejo (oxidado) con uno nuevo. El metal oxidado (pasivado) es siempre más noble que el metal nuevo, ya que tiene un potencial más elevado; por tanto, este último sufrirá los efectos de la corrosión.

Hay que señalar, desde el punto de vista práctico, que este fenómeno es válido para metales tan parecidos como el acero y la fundición. Un caso frecuente en los explotadores de canalizaciones enterradas es el de la corrosión de los tornillos de acero de unión de las bridas de los tubos de fundición.

CORRIENTES VAGABUNDAS

Con el término corrientes vagabundas o parásitas se designa a aquellas corrientes eléctricas que circulan en el suelo fuera de los circuitos previstos. La intensidad de estas corrientes con frecuencia es variable y depende esencialmente de la naturaleza y funcionamiento de la fuente que las emite: tracción eléctrica, subestaciones, etcétera.

La corriente eléctrica busca siempre recorridos de menor resistencia y por esta razón sigue con facilidad las canalizaciones metálicas enterradas y en particular las envolturas metálicas de los cables eléctricos y telefónicos.

La corrosión se produce siempre en los lugares en donde la corriente sale de la estructura que ha recorrido, provocando una disolución anódica tanto más peligrosa cuanto más localizada esté.

La figura 39 ilustra el mecanismo de la corrosión de una tubería motivada por la acción de corrientes vagabundas que provienen de un sistema de tracción eléctrica.


Figura 39. Mecanismo de corrosión de una tubería por efecto de las corrientes vagabundas que provienen de un sistema de tracción eléctrica.

MEDICIÓN DE LA RESISTIVIDAD DEL SUELO

Para determinar si puede utilizarse la protección catódica para prevenir la corrosión de una estructura enterrada, se debe conocer, en primer lugar, cómo medir la resistividad del suelo o terreno.

Unidades de resistividad del suelo

La unidad de resistividad del suelo es el ohm-centímetro (W-cm). La resistividad de un suelo determinado es igual numéricamente a la resistencia que ofrece el terreno contenido en un cubo de 1 cm de arista, que se mide entre las caras opuestas del cubo (véase la figura 40).


 



 



Figura 40. (a) La resistividad ( ) en W-cm es numéricamente igual que la resistencia (R) en ohms en un cubo de un cm de arista. (b) Resistencia de un sólido rectangular. (c) Caja de suelo.

La resistencia de un sólido rectangular está dada por:



en donde W, L y D son las dimensiones (en cm), como se ve en la figura 40, y p es la resistividad (en W cm) para que las unidades sean consistentes. La resistencia entre dos terminales de forma y tamaño cualquiera, en contacto con un terreno, está determinada por la relación entre el tamaño y la distancia entre las terminales y por la resistividad del suelo. En casos sencillos se puede determinar la resistencia, pero la complejidad matemática a menudo es muy grande.

Determinación de la resistividad por el método de los cuatro electrodos

En la práctica de la ingeniería de la corrosión se requiere medir la resistividad de grandes extensiones y a menudo, a una cierta profundidad. Para ello se utiliza el método de Wenner, más conocido como método de los 4 electrodos. El circuito básico se presenta en la figura 41.



Figura 41. Medición de la resistividad del suelo por el método de Wenner o de los cuatro electrodos. La distancia (b) o sea la profundidad a la que está enterrada el electrodo (barra de cobre o acero) debe ser pequeña comparada con la distancia (a) entre los electrodos.

La resistividad se determina a partir de:

La medida que se obtiene es un valor promedio a una profundidad aproximadamente igual que el espaciado entre los electrodos. Es costumbre efectuar las mediciones de resistividad con un espaciado entre electrodos previamente establecido. Así, con espaciados de 5 pies 2 1/2 pulgadas, 10 pies 5 pulgadas y 20 pies 10 pulgadas, el producto 2 pa respectivamente toma los valores de 1 000, 2 000 y 4 000, lo que facilita el cálculo.

Los detalles de la operación varían de acuerdo con el instrumento particular empleado, pero el principio es común a todos. Se entierran cuatro varillas de cobre equiespaciadas, y se conectan las dos externas (C1 y C2 en la figura 41) a las terminales de la fuente de corriente, y las dos internas (P1 y P2 de la misma figura) a un medidor potencial (voltímetro). Nótese que se mide la resistencia entre las dos varillas internas o electrodos de potencial; las dos varillas externas sirven para introducir corriente en el suelo.

El valor obtenido corresponde a la resistividad promedio a una profundidad aproximadamente igual al espaciado entre los electrodos.

La presencia de estructuras metálicas enterradas puede alterar los resultados de la medición. En este caso se aconseja realizar el alineamiento de los cuatro electrodos perpendicularmente a la estructura enterrada (Figura 42).



Figura 42. Disposición correcta de los cuatro electrodos para la medida de la resistividad en presencia de una tubería enterrada.

La investigación de la resistividad de un suelo consiste, por lo general, en una serie de medidas tomadas a lo largo de un línea, y se utiliza normalmente el método de los cuatro electrodos. Las lecturas deben tomarse de acuerdo con un procedimiento sistemático. Un método recomendable seguiría los siguientes pasos:

1) Deben efectuarse lecturas al menos cada 400 pies (1 pie = 12 cm).

2) Deben realizarse medidas donde exista un cambio visible en las características del suelo.

3) Dos lecturas sucesivas no deben diferir por más de 2:1. Cuando una lectura difiere de la precedente por mayor cantidad que la relación anterior, es necesario volver atrás y rehacer la lectura; esto debe repetirse hasta que se cumpla con la condición.

4) Como una excepción a la regla anterior, no será necesario tomar 2 lecturas a distancias menores de 25 pies.

5) Como otra excepción a la regla, ésta no debe aplicarse cuando el valor más bajo de las dos lecturas es mayor que 20 000 W-cm.

Para este tipo de investigaciones deben efectuarse mediciones de la resistividad del suelo a la profundidad a la cual va a estar enterrada la tubería. El método de los cuatro electrodos debe emplearse con un espaciado entre varillas de aproximadamente una vez y media la profundidad de la tubería. Muy a menudo, se escoge un espaciado de 5 pies 2 pulgadas y media para este propósito (lo cual supone que el producto 2pa es igual a 1000).

Los resultados obtenidos por este procedimiento se grafican en un diagrama que represente la longitud de la línea ( figura 43). La escala de resistividad es logarítmica, ya que es más importante la relación de resistividades que sus diferencias. A partir de estos diagramas se pueden localizar fácilmente los "puntos calientes" o sea las áreas de mayor corrosividad del suelo.



Figura 43. Perfil de resistividad de un suelo. Las mediciones de resistividad se colocan en el eje de ordenadas (utilizando una escala logarítmica y las distancias a lo largo de la tubería, en el eje de abscisas (escala métrica).

PROTECCIÓN CATÓDICA DE TUBERÍAS ENTERRADAS

Protección con ánodos de sacrificio

Se une eléctricamente la tubería de hierro al ánodo galvánico, generalmente Zn o Mg. Un esquema simple de montaje está representado en la figura 44. La distancia mínima entre el ánodo y la tubería debe ser de 3 metros y deben utilizarse cables de conexión de bastante grosor para evitar las caídas de tensión. Hay que cuidar también muy particularmente la unión del cable con el alma de acero del ánodo. Este cable debe de estar siempre bien aislado evitando un consumo innecesario de corriente para lograr su protección.



Figura 44. Esquema del montaje de un sistema de protección catódica de una tubería enterrada con un ánodo de sacrificio.

Cuando los ánodos están en contacto directo con el suelo, se recubren con frecuencia de una capa muy resistente. Esta capa ocasiona un aumento sensible de la resistencia de los ánodos con tendencia a pasivarlos, hasta el punto de hacerlos inoperantes. Para remediar la influencia desfavorable de estos factores sobre el proceso de disolución de los ánodos de sacrificio, se coloca a su alrededor un medio químico artificial. Este medio químico, que podemos llamar "activador" (véase la figura 44), es más conocido en la terminología de la ingeniería de la corrosión por la palabra inglesa "backfill", y debe ejercer tres funciones principales:

1) Reducir la resistencia de contacto ánodo-suelo.

2) Estabilizar el potencial del ánodo, evitar la polarización y asegurar una fuente segura de corriente.

3) Mejorar el rendimiento, disminuyendo la corrosión espontánea y consiguiendo un ataque del ánodo uniforme.

Numerosos productos químicos han sido utilizados en la composición del "activador o backfill", como por ejemplo la arcilla ordinaria, la bentonita, el sulfato de calcio, la cal, el hidróxido de sodio, el dicromato de sodio, el cloruro de sodio, el sulfato de sodio, el de magnesio, etc. Los activadores a veces están constituidos por un solo compuesto, pero lo más frecuente es que sean mezclas binarias o ternarias. Entre los productos citados, el yeso y la bentonita son los de uso más corriente, ya que permiten preparar activadores muy eficaces, posiblemente en virtud de su propiedad de retener el agua.

El empleo de la mezcla formada por arcilla y yeso para los ánodos de Zn permite obtener un rendimiento elevado . En la práctica, las mezclas de yeso y arcilla se realizan en las siguientes proporciones:

arcilla 50 %- yeso 50 %

arcilla 25%- yeso 75 %

Protección con corriente impresa

En este caso, se obtiene la protección de la tubería conectándola al polo negativo de una fuente de alimentación de corriente continua. El polo positivo (ánodo) está constituido generalmente por grafito, aleaciones de plomo o aleación de hierro y silicio. La corriente que sale del ánodo llega a la tubería que se trata de proteger según el esquema de la figura 45.



Figura 45. Sentido de la corriente de un sistema de protección catódica con corriente impresa de una tubería.

Normalmente las tuberías, además de la protección catódica, llevan un sistema de protección a base de sustancias bituminosas de 3 a 6 mm de espesor, lo que les proporciona un buen aislamiento. También se utilizan mucho para este fin las bandas adhesivas de cloruro de polivinilo (PVC). En el cuadro 26 se dan algunos valores para la protección de una tubería en función de la resistencia del revestimiento y del diámetro del conducto.

CUADRO 26. Densidad de corriente necesaria (en mA/km), para la protección de una tubería enterrada en función de la resistencia del revestimiento y del diámetro del conducto.



Tal como se ha indicado en la figura 45, para que el reparto de corriente sea bueno los ánodos deben estar lo más lejos posible del conducto; se recomienda una distancia mínima de 50 metros.

En determinados casos o cuando se crea oportuno, los ánodos pueden ir en un lecho de bentonita o polvo de coque; esto crea un medio homogéneo, húmedo y de baja resistividad alrededor del ánodo, con lo que aumenta su diámetro aparente.

Como ya se ha señalado, el potencial al que hay que llevar la tubería es de -0.85 V con respecto al electrodo de referencia de Cu/CuSO4 saturado.

MEDICIÓN DEL POTENCIAL DE UNA ESTRUCTURA ENTERRADA

La medición se realiza con ayuda de un electrodo de referencia de Cu/CuSO4 saturado y un voltímetro de alta impedancia de entrada.



Figura 46. Posiciones del electrodo de referencia en la medida de potencial de una estructura enterrada (potencial tubería-suelo).

El valor del potencial medido depende de la posición en que se sitúa el electrodo de referencia con respecto a la estructura. Por ejemplo, en la figura 46 se presenta el caso de una tubería protegida catódicamente, en la cual el electrodo de referencia se coloca en las siguientes posiciones:

1) En un punto del terreno sobre la vertical de la tubería (Ec).

2) En un punto del terreno suficientemente alejado de la tubería y del ánodo, de modo que el valor medido sea constante (Eremoto).

3) En un punto del terreno intermedio entre los puntos 1 y 2.

4) En un punto del terreno sobre la vertical del ánodo (Ea).

5) En un punto del terreno intermedio entre los puntos 2 y 4.

Cuando el electrodo se sitúa en las posiciones 1 y 4, los potenciales respectivos de la tubería y del ánodo corresponden a Ec y Ea, en la figura 47. Cuando el electrodo de referencia se sitúa en el punto 3, el potencial de la tubería (Ec ) es siempre más negativo que Ec, tanto más cuanto mayor es la distancia del punto 3 a la tubería (Figura 47). La diferencia (Ec, del punto 3 - Ec) corresponde a la caída óhmica entre los puntos 3 y 1.



Figura 47. Variación del potencial de la tubería y del ánodo con la situación del electrodo de referencia.

El potencial del ánodo con el electrodo de referencia en el punto 5 es siempre más positivo que Ea, y se vuelve más positivo al aumentar la distancia ánodo-electrodo de referencia.

El potencial de la tubería (y el del ánodo) con el electrodo de referencia situado en el punto 2 estará siempre comprendido entre Ec y Ea, sin variar al trasladar el de referencia.

Por tanto, con la medida del potencial efectuada colocando el electrodo de referencia sobre la tubería (punto 1), sobre el ánodo (punto 4) o en posición remota (punto 2), es posible conocer si el área de la tubería que está debajo del electrodo de referencia funciona catódica u anódicamente. Hay que señalar que si con el electrodo de referencia colocado en el punto 2 se mide un potencial más negativo que el determinado sobre la vertical de la tubería, la zona enterrada es catódica; si se mide un potencial más positivo la zona será anódica.

En la práctica, este tipo de determinaciones sólo es posible en estructuras no revestidas, en cuanto que la corriente en éstas es lo suficientemente elevada como para dar lugar a caídas óhmicas importantes en el terreno y debido a esto, medir diferencias de potencial apreciables cuando se traslada el electrodo de referencia de un punto a otro.

InicioAnteriorPrevioSiguiente