IV. LA MECÁNICA CUÁNTICA
E
N EL
primer cuarto de nuestro siglo, las ideas cuánticas van surgiendo poco a poco en forma un tanto deshilvanada. El primero en introducir el cuanto de acción es Planck, físico alemán que anunció su teoría de la radiación del cuerpo negro en la Navidad de 1900. Planck se vio forzado a suponer una hipótesis no ortodoxa y también ad-hoc: la energía luminosa de frecuencia v no es continua, viene en paquetes, en cuantos cuya energía E es igual a hv. Para explicar los datos experimentales, ajustó esa constante h, hoy llamada de Planck, y encontró el pequeñísimo valor h = 6.626 x 10-27 erg.s.Quien resolvió otro rompecabezas el propuesto por el efecto fotoeléctrico también usando el postulado de cuantización de la luz, fue Albert Einstein. Para explicar por qué la luz de baja frecuencia era incapaz de arrancar electrones de ciertos materiales, mientras que la radiación de alta frecuencia sí desprendía los electrones del sólido, Einstein en 1905 volvió a suponer que la energía de un cuanto de luz de frecuencia v estaba dado por hv. Fue por ese trabajo que recibió el premio Nobel en 1921.
El tercer gran paso en la evolución de las ideas cuánticas ya lo hemos relatado: Bohr calculó el espectro del hidrógeno, y lo explicó bien, suponiendo la existencia de sus órbitas especiales y la fórmula de Planck para obtener la frecuencia radiada por el electrón al pasar de una órbita estable a otra. Una vez más, hace su aparición la constante h de Planck.
Un golpe más a la teoría clásica provino en 1922 al observarse el efecto Compton: al dispersar rayos X con un bloque de parafina emergía una radiación de frecuencia menor que la incidente. Suponiendo los cuantos de luz con energía hv, la conservación de la energía y el ímpetu de acuerdo a las leyes de la relatividad, es fácil explicar este efecto. Como veremos después, tanto el efecto fotoeléctrico como el Compton forman parte esencial de las técnicas de detección de la radiación gamma. Gracias a estos dos efectos, el concepto de cuanto de luz se había vuelto, a mediados de los años veinte, parte de la física y hubo que bautizarlo. El químico norteamericano G. N. Lewis acuñó el nombre de fotón que usamos desde entonces.
Los tiempos estaban ya maduros para que se formulara una verdadera teoría física aplicable al mundo microscópico. En forma independiente, dos físicos llegaron casi simultáneamente a postular esa nueva física: Werner Heisenberg, alemán, inventó la llamada mecánica de matrices, y Erwin Schrñdinger, austriaco, hizo lo propio con la mecánica ondulatoria. Como se demostró poco después, ambas formulaciones son equivalentes.
Esta nueva teoría permitió describir las interacciones que ocurren en el mundo microscópico tanto entre las partículas como entre éstas y los fotones. De la nueva física surge un concepto revolucionario: la incertidumbre asociada a los procesos de medición. Un experimento pensado que imaginó Heisenberg nos servirá para ilustrar esta particularidad del microcosmos, donde las operaciones para medir el ímpetu de una partícula microscópica interfieren con las que se deben realizar para determinar su posición. Su razonamiento es el siguiente: cuando observamos una partícula, debemos verla en alguna forma y para ello se requiere iluminarla con luz de frecuencia apropiada. Mientras más pequeña sea la partícula, necesitamos luz de menor longitud de onda y, por lo tanto, de mayor frecuencia. Como E = hv, lo anterior implica usar fotones más energéticos, que deben rebotar en la partícula para luego llegar a nuestro ojo, al microscopio o a cualquier otro detector que empleemos. Por tanto, la velocidad de la partícula sufre cambios siempre mayores, pues la colisión con los fotones cada vez más energéticos la altera más. En otros términos, a medida que deseemos fijar con mayor precisión la posición de una partícula, la medición de su velocidad se torna más imprecisa.
Éste es el contenido básico del principio de incertidumbre, que Heisenberg formuló en 1927: el producto de los errores con que podemos medir posición e ímpetu de una partícula tiene un mínimo, que es inherente a la naturaleza y que está dado por la constante h de Planck.
El principio de Heisenberg limita la aplicación de los conceptos clásicos de partícula y de onda. Ondas y partículas son habituales en nuestro mundo cotidiano porque en él vemos cuerpos grandes y lentos. Empero, en el mundo microscópico, ondas y partículas son conceptos que se reducen a una mera forma de hablar y ya no son aplicables a los procesos atómicos o nucleares. Así, en la mecánica cuántica no caben ya las trayectorias que siguen las partículas clásicas. Se les ha canjeado por las soluciones de la ecuación que Schrñdinger postuló, soluciones que se continúan llamando ondas.
¿Cómo es que estas ondas de Schrñdinger reemplazan al viejo concepto de órbita? La respuesta a esta crucial pregunta la dio Max Born, el maestro de Heisenberg, poco tiempo después de que el físico austriaco publicara la mecánica ondulatoria. Según Born, la solución de la ecuación de Schrñdinger da la probabilidad de encontrar la partícula. La mecánica cuántica es una teoría probabilística pues el principio de Heisenberg, incluido en las ecuaciones de la mecánica ondulatoria, altera profundamente el determinismo clásico.
![]()