XII. RESONANCIA

SUPONGAMOS que un niño se está meciendo en el columpio de un jardín. El columpio tarda determinado tiempo en ir y regresar, o sea en realizar un ciclo completo. Este tiempo se llama el periodo del columpio. También podemos hablar de la frecuencia de la oscilación, es decir, del número de ciclos que realiza el columpio en un segundo. Hay una relación entre el periodo y la frecuencia; en efecto, si por ejemplo la frecuencia es de 5 ciclos en un segundo, esto significa que un ciclo tarda 1/5 de segundo en realizarse. Vemos que el periodo y la frecuencia son: uno el inverso del otro. Por lo tanto, el columpio tiene una frecuencia característica de oscilación.

El ejemplo anterior ilustra un caso general. Cuando un sistema puede oscilar (o vibrar) entonces tiene una, o varias, frecuencias características. Estas frecuencias dependen de las propiedades del sistema. Por ejemplo, en el caso del columpio la frecuencia depende de la longitud del columpio. Hay muchos sistemas que pueden vibrar: un resorte, una placa delgada sujeta en uno de sus vértices, una construcción, etc. Cada uno de estos sistemas tiene su(s) frecuencia(s) característica(s) de vibración.

Regresemos al caso del columpio con el niño. Supongamos que ahora lo vamos a empujar para que siga oscilando. Para ello tenemos que impulsarlo en determinados instantes. Supongamos que la frecuencia del columpio fuera de 2 Hz, o sea, que realizara dos vueltas completas en un segundo; por lo tanto, su periodo sería (1/2) seg = 0.5 seg. Si empujamos el columpio cada 0.2 seg. (o sea, aplicamos una fuerza), la amplitud con la que oscila el columpio no será muy grande. Si alguna vez hemos empujado a un niño en un columpio sabemos que se puede lograr una amplitud bastante grande si lo impulsamos cada vez que termina un ciclo, que en nuestro caso sería cada 0.5 seg. Por tanto, si hacemos esto último estaremos aplicando sobre el columpio una fuerza también periódica con una frecuencia igual a 2 Hz, que es precisamente la frecuencia característica de oscilación del columpio. Si empezamos aplicando la fuerza en cada periodo de 0.2 seg., o sea, con una frecuencia de 1/0.2 = 5 Hz, entonces no logramos una amplitud grande, aun si la fuerza es grande.

Lo anterior ilustra un hecho muy importante. Si a un sistema que oscila se le aplica una fuerza externa también periódica, entonces la amplitud de la oscilación del sistema dependerá de la frecuencia de la fuerza externa.

Si la frecuencia de esta fuerza es distinta de las frecuencias características del sistema, entonces la amplitud de la oscilación resultante será relativamente pequeña.

Si la frecuencia de la fuerza externa es igual a alguna de las frecuencias características del sistema, entonces la amplitud resultante será muy grande. En este caso se dice que la fuerza externa ha entrado en resonancia con el sistema.

En la resonancia la amplitud de la oscilación es muy grande. Esto quiere decir que el sistema se aleja mucho de la posición de equilibrio. Por ejemplo, en el caso de un resorte, si se le aplica una fuerza periódica que tenga la misma frecuencia que la característica del resorte, éste se estirará tanto que llegará un momento en que se destruirá.

Esta destrucción también puede ocurrir en cualquier sistema mecánico que pueda oscilar. Si el sistema entra en resonancia con una fuerza externa, su amplitud de oscilación aumenta tanto que el sistema se puede destruir. Un ejemplo impresionante de lo anterior ocurrió en el año de 1940 en un puente en Tacoma, EUA. Unos meses después de haber sido completado, un temporal azotó la región, y una de las componentes de la fuerza del viento fue de frecuencia justamente igual a una de las frecuencias características del puente. El puente entró en resonancia con el viento y empezó a oscilar con una amplitud muy grande que lo destruyó.

Cuando se diseñan estructuras es importante hacerlo de manera que sus frecuencias características sean tales que estén lo más lejanas posibles de las frecuencias de las perturbaciones a las que la estructura pueda estar sujeta, como por ejemplo vientos, terremotos, etcétera.

Este hecho es general: si un sistema mecánico entra en resonancia puede ocurrir que se destruya.

Cuando un pelotón de soldados está marchando y va a cruzar un puente, rompe la marcha. De no hacerlo, los golpes que dan al marchar podrían tener componentes con una frecuencia igual a alguna de las frecuencias características del puente. Al romper la marcha evitan que haya resonancia.

Otro caso desafortunado fue el del terremoto que sacudió a la ciudad de México en 1985. Esta perturbación tenía una frecuencia de 0.5 Hz, y como un buen número de edificios de alrededor de seis pisos tenían entre sus frecuencias naturales una de valor de alrededor de 0.5 Hz, entraron en resonancia con el terremoto; sus amplitudes de oscilación crecieron a tal grado que se destruyeron.

Por otro lado, existen otros fenómenos en los que la resonancia se utiliza de manera ventajosa. Por ejemplo, el sintonizador de un aparato de radio o de televisión es un circuito electrónico formado básicamente por un condensador y una bobina. Este tipo de circuito es oscilatorio y tiene una frecuencia característica que depende de los valores de la capacidad del condensador y de la inductancia de la bobina.

Las ondas eléctricas que emiten las estaciones de radio o televisión son captadas por la antena del aparato receptor (véase el capítulo XVII) y son conducidas al sintonizador. Pero estas ondas tienen la frecuencia de la estación. Cuando damos vuelta a la perilla del sintonizador lo que se está haciendo es cambiar el valor de la capacidad de su condensador y así modificar la frecuencia característica del circuito para que llegue a tener el mismo valor que la frecuencia de la onda que se desea recibir. Al ser iguales las frecuencias de la estación y la característica del circuito, éste entra en resonancia y su respuesta es muy grande. De esta forma se logra seleccionar una onda determinada de todas las que emiten las estaciones de la localidad.

En capítulos posteriores veremos que el fenómeno de resonancia es muy frecuente en las aplicaciones de la electricidad y el magnetismo.

InicioAnteriorPrevioSiguiente