XXII. LA TELEVISIÓN

UNA VEZ que se pudieron enviar tanto señales telegráficas, voz y música a través del teléfono, hace alrededor de un siglo, varias personas empezaron a considerar la posibilidad de enviar imágenes por medios eléctricos (o sea, lo que hoy en día hace la televisión). Sin embargo, había mucho escepticismo al respecto. Un editorial de la revista técnica inglesa, The Electrician se preguntaba "¿Veremos alguna vez mediante la electricidad?"

En 1884, el alemán Paul Nipkow solicitó una patente para un sistema de televisión que él denominó "telescopio eléctrico". Este burdo aparato era en esencia un dispositivo electromecánico que utilizaba una fotocelda para transformar luz en corriente eléctrica. La imagen era muy burda, sin que se pudiesen reproducir los detalles finos. Variaciones de este dispositivo se diseñaron hasta 1930 sin que realmente tuviesen éxito.

En una reunión de la Sociedad Roentgen, efectuada en Inglaterra en 1911, el ingeniero eléctrico A. A. Campbell Swinton presentó un esquema de sistema de televisión, que es el que se usa en la actualidad. La escena que se desea transmitir se enfocaría sobre una placa hecha de material no conductor de electricidad, por ejemplo de mica, la cual se encuentra dentro de un tubo de rayos catódicos. Este tubo fue inventado a mediados del siglo XIX por William Crookes para estudiar las propiedades de las corrientes eléctricas a través de gases y tiene la forma que se muestra en la figura 42. Consiste en un tubo de vidrio al vacío, dentro del cual hay un cátodo frente a un ánodo. La diferencia entre este arreglo y el de los tubos al vacío usados para triodos, es que el ánodo ahora tiene en su centro una pequeña abertura que permite el paso de partículas. Cuando el filamento calienta el cátodo, éste desprende electrones que son atraídos por el ánodo, y un haz de ellos lo cruza para finalmente chocar contra el extremo opuesto del tubo en el punto L. i ahora se añade un par de placas paralelas, las UV y WZ (Figura 42), que ejerzan determinada fuerza sobre los electrones, en lugar de llegar al punto L se desviarán y llegarán a otro punto, como el M. Esta fuerza puede ser de naturaleza eléctrica si UV y WZ son las placas de un condensador. De la magnitud del campo eléctrico que se genere entre las placas dependerá la magnitud de la desviación del haz, y éste incidirá no en L sino en M. Por supuesto, esta fuerza se controla exteriormente, aunque en la figura no se muestra el circuito del que forman parte las placas UV y WZ. Además de este conjunto de placas se puede añadir otro que sea perpendicular o paralelo al plano de la figura 42; estas placas desviarán el haz lateralmente, es decir, fuera del plano de la misma figura. Al conjunto de ánodo, cátodo y placas se le llama cañón electrónico, y por medio de éste se puede hacer incidir el haz de electrones en cualquier punto del fondo del tubo.

Figura 42. Esquema del tubo de rayos catódicos de Crookes.

Ahora bien, la parte interior del fondo del tubo, desde F hasta K, se cubre, tal como se mencionó arriba, con una placa no conductora, en este caso de mica, y con un metal fotoeléctrico se forma un mosaico que tiene un número muy grande de pequeños islotes, que emite electrones cuando se le ilumina. Cuando un rayo de luz que proviene de la imagen incide sobre los islotes, cada uno de ellos emite electrones en proporción a la cantidad de luz que le llega. Cuando un islote emite electrones, debido a que inicialmente era eléctricamente neutro, queda con una carga eléctrica positiva; mientras mayor sea el número de electrones que emita, mayor será la carga positiva que queda depositada en el islote. Como la imagen que incide sobre los islotes tiene en diversos puntos diferentes intensidades, se formará en el mosaico del fondo del tubo una distribución de carga eléctrica positiva que lleva las características de la imagen. Los islotes están inmersos dentro de la placa de mica, que es aislante, por lo que cada uno de ellos está eléctricamente aislado de los otros islotes. Detrás de la placa de mica hay una placa metálica (Figura 43). Cada islote cargado forma junto con la placa un condensador en miniatura. En seguida, con el cañón electrónico se hace incidir un haz de electrones sobre cada uno de los islotes, en forma sucesiva, es decir, el cañón barre toda la superficie de la placa de mica. El haz de electrones que incide sobre cada islote reemplaza a los electrones que le faltan (que se emitieron cuando llegó la luz al mencionado islote) y esto se manifiesta en un cambio en el voltaje entre el islote y la placa metálica. Este voltaje, cuya magnitud depende de la intensidad de la luz que llegó al islote, se transmite al amplificador. De esta manera se va generando una secuencia de voltajes que se van transmitiendo, y así se transforma una señal luminosa en una señal eléctrica. El amplificador va pasando las señales a un circuito que las transmite en forma de ondas electromagnéticas. Este dispositivo forma la cámara de televisión.

Para el receptor, Campbell Swinton escogió un tubo de rayos catódicos diseñado en 1897 por Ferdinand Braun, de la Universidad de Estrasburgo, en ese entonces parte de Alemania. Este tubo, llamado cinescopio, es similar al que aparece en la figura 42; es de vidrio al vacío y tiene en su fondo una pantalla de material fluorescente, como fósforo, que emite luz cuando un haz de electrones incide sobre él. Mientras más intenso sea el haz, mayor será la intensidad de la luz emitida. En el cuello del tubo se coloca un cañón de electrones que va barriendo todos los puntos de la pantalla, siguiendo un patrón de líneas horizontales desde arriba hasta abajo. La señal que se transmitió desde la cámara controla la posición y la intensidad del haz, de tal forma que al incidir sobre la pantalla, los electrones producen en un punto un centelleo de la misma intensidad del haz luminoso que incidió sobre el islote correspondiente en la cámara emisora.

Figura 43. Esquema de un dispositivo que puede transformar una señal luminosa en una señal eléctrica.

A medida que el haz electrónico barre la superficie de la pantalla, ésta se va iluminando punto por punto. El barrido total de la superficie tarda un intervalo de alrededor de (1/30) seg = 0.03 seg; es decir, en 0.03 seg se prenden cientos de miles de puntos luminosos en la pantalla. El ojo humano tiene una característica, la persistencia, que hace que una imagen se siga viendo alrededor de 0.1 seg después de que se ha retirado de la vista; por tanto, el ojo humano sigue viendo todos los puntos que se van iluminando en la pantalla en 0.03 seg, aun después de que se apagaron. De esta manera, el cerebro tiene la impresión de que toda la superficie se iluminó al mismo tiempo.

Ésta fue una idea extraordinaria de Campbell Swinton que casi describe la actual tecnología de la televisión. Sin embargo, él nunca construyó parte alguna de este sistema, aunque sí estaba consciente de sus dificultades, según expresó: "No creo por un solo instante que este sistema pueda funcionar sin una gran cantidad de experimentación y probablemente muchas modificaciones."

Campbell Swinton creó el diseño conceptual sobre el que otras personas trabajarían. Fue Vladimir Zworykin (1889-1982), un ingeniero ruso inmigrado a Estados Unidos en 1919 quien construyó la primera cámara práctica. En 1924 mostró a la compañía Westinghouse una versión primitiva, pero que funcionaba, de un sistema de televisión. Las imágenes eran débiles y vagas, casi sombras. Los directivos de la empresa no se impresionaron tampoco cuando Zworykin les mostró una versión mejorada en 1929.

A quien sí impresionó Zworykin fue a David Sarnoff, director de otra compañía, la RCA Victor, quien creía en la promesa comercial de la televisión. En 1923 Sarnoff había dicho a la mesa directiva de la RCA: "Puede ser que, en el futuro, cada aparato de radio para uso doméstico esté equipado con una televisión[...] que, además de oír, hará posible ver lo que ocurre en la estación emisora."

En su primera reunión con Zworykin, Sarnoff le preguntó cuánto costaría perfeccionar el sistema de televisión. "Alrededor de unos cien mil dólares", respondió Zworykin. Años después Sarnoff relataba que la RCA llegó a gastar 50 millones de dólares en el proyecto de la televisión antes de ver un centavo de ganancia.

Zworykin fue contratado en 1930 por la RCA como director de investigación electrónica y en 1933 finalmente convenció a Sarnoff de que su cámara, a la que llamó iconoscopio (del griego iekon, imagen, y skopon, ver), y su cinescopio eran satisfactorios. La clave del éxito del iconoscopio de Zworykin fue su método de depositar más de un millón de islotes fotosensibles aislados en la placa de la cámara. Campbell Swinton había propuesto que fueran de rubidio, pero Zworykin descubrió que era mejor cubrir plata con óxido de cesio. Inventó un método para hacer el mosaico de islotes que arriba mencionamos.

La RCA probó por primera vez un sistema completo en 1933. Transmitió imágenes de 240 líneas a una distancia de siete kilómetros en Colligswood, Nueva Jersey. Después aumentaron el número de líneas; actualmente se usan 525. En 1938 la RCA, después de mejorar varios detalles, tuvo listo un sistema de televisión en funcionamiento. Sin embargo, por problemas burocráticos el gobierno no aprobó la licencia de funcionamiento sino hasta julio de 1941. Varios aparatos de televisión se produjeron y vendieron, pero con la entrada de Estados Unidos en la segunda Guerra Mundial se detuvo su producción. Durante los años de la guerra, un grupo de científicos e ingenieros dirigidos por Zworykin desarrollaron una cámara 100 veces más sensible que el iconoscopio y al terminar la guerra, la RCA reinició sus trabajos en el campo de la televisión.

En el otoño de 1946 un aparato de televisión con una pantalla de 10 pulgadas se ofreció a la venta por 375 dólares. A partir de ese momento la vida en todo el mundo inició un cambio drástico.

InicioAnteriorPrevioSiguiente