I. INTRODUCCIÓN

EN ESTE libro se desarrolla un caso muy importante de la relación entre ciencia y tecnología: el electromagnetismo. Se ilustra la dependencia entre el conocimiento científico y las aplicaciones tecnológicas. El caso del electromagnetismo es notable, entre otras cosas, por el hecho de que una vez llevados a cabo los descubrimientos científicos tuvieron inmediata aplicación práctica y viceversa, las aplicaciones prácticas fomentaron la investigación científica para resolver diferentes problemas, lo cual a su vez abrió nuevos horizontes científicos.

En los capítulos II y III se reseña la curiosidad científica que ha tenido el hombre desde tiempos inmemoriales por las propiedades de la electricidad por un lado y del magnetismo por otro.

En los capítulos IV-VI se relata el descubrimiento de la relación entre estos dos campos, resaltando el hecho de que no son independientes. Se habla de los trabajos de Christian Oersted, André-Marie Ampñre y Michael Faraday, algunas de las figuras señeras de la ciencia en el siglo pasado.

El conocimiento científico de la relación entre electricidad y magnetismo dio lugar, inmediatamente, a aplicaciones tecnológicas importantes. Éstas se detallan en los capítulos VII-X e incluyen al telégrafo, con el que el hombre pudo comunicarse por medios eléctricos, y a las máquinas eléctricas, o sea, motores eléctricos y generadores de electricidad. De esta forma, el hombre tuvo a su disposición fuentes de corriente eléctrica de gran intensidad, hecho que cambió drásticamente la vida, dando lugar a una revolución en la forma de vida de la humanidad, cuyas consecuencias fueron la iluminación eléctrica y el teléfono, entre otras.

Otra novedad importante que se dio en el desarrollo de estas aplicaciones de la electricidad y el magnetismo fue la creación de los primeros laboratorios industriales, que desempeñaron un papel primordial en los subsiguientes avances.

Por otro lado, la historia dio un vuelco inesperado. James Glerk Maxwell realizó una gran síntesis teórica de los trabajos de Ampère y Faraday sobre la electricidad y el magnetismo, lo que le condujo al sorpresivo descubrimiento de que la luz era de origen eléctrico y magnético. Además, como consecuencia de la teoría que desarrolló predijo la existencia de las ondas electromagnéticas. El contexto en que trabajó Maxwell se presenta en los capítulos XI a XIII y su contribución se relata en el capítulo XlV. Basado en el trabajo de sus antecesores, Maxwell construyó uno de los pilares de la física, comparable con la mecánica desarrollada por Newton. Hemos de mencionar que la teoría electromagnética de Maxwell sirvió para el futuro desarrollo de la teoría de la relatividad de Einstein.

Años después de que Maxwell hiciera la predicción de las ondas electromagnéticas en forma teórica, Hertz llevó a cabo un notable experimento, que es un ejemplo de la forma en que se hace ciencia. Se propuso indagar si en la naturaleza efectivamente existen ondas electromagnéticas. Su trabajo verificó en forma brillante las predicciones de Maxwell.

Después de los experimentos de Hertz no quedó ya ninguna duda, desde el punto de vista conceptual, acerca de la realidad física de los campos, idea que Faraday había propuesto originalmente y que Maxwell elaboró en su forma matemática. Esta idea ha sido de crucial importancia en la física posterior, tanto para la relatividad de Einstein como para las teorías modernas de las partículas elementales

Otra consecuencia de los trabajos de Maxwell y Hertz fue el inicio de las comunicaciones inalámbricas. Los antecedentes y trabajos más importantes se presentan en los capítulos XVI a XVIII.

A principios del presente siglo, los trabajos de Marconi solamente habían dado por resultado el telégrafo inalámbrico. La necesidad de desarrollar la radiotelefonía precipitó el inicio de la electrónica moderna. De hecho, esta rama del electromagnetismo consolidó el importante papel de los laboratorios industriales. En el capítulo XX se describe la relación entre la parte científica y sus aplicaciones prácticas. Una vez logrado el entendimiento fundamental del funcionamiento de los tubos al vacío hubo una nueva irrupción de grandes novedades: la radio, que dominaría la vida humana durante varias décadas, y posteriormente la televisión, que tanta repercusión ha tenido. Esto lo reseñamos en los capítulos XXI y XXII.

En el capítulo XXIII presentamos en forma breve la introducción y aplicaciones de la electricidad en México.

En los capítulos XXV y XXVI se detalla la invención del radar y el papel determinante que desempeñó en la victoria de los ingleses en la llamada Batalla de Inglaterra. Ésta, que tuvo en sus momentos culminantes en el otoño de 1940, fue decisiva en la posterior derrota de la Alemania nazi y pudo lograrse gracias a que los ingleses contaban con el radar, primitivo, pero funcional. Éste fue una aplicación importante de la teoría electromagnética. Para mejorar su funcionamiento y reducir su tamaño fue necesario trabajar con microondas, que se lograron generar por medio del magnetrón.

Como se reseña en el capítulo XXVII, hacia 1946 se terminó de construir un dispositivo que llegaría a tener gran influencia en la vida humana: las computadoras electrónicas.

Otra revolución se lleva a cabo en la segunda parte de la década de 1940: la invención del transistor. En el capítulo XXVIII se presenta el trabajo científico que se realizó para lograr esta novedad; en particular, la base cuántica fue indispensable para hacer una descripción correcta de la estructura microscópica de los sólidos. De esta manera, como se puede leer en el capítulo XXIX, se inició un torrente de aplicaciones y de mejoras cada vez más interesantes, lo que hizo posible la miniaturización de los aparatos electrónicos.

De hecho, a partir de la década de 1950 se ha vivido en una revolución continua. Los avances científicos en la comprensión de la estructura de la materia han dado lugar a un sinfin de aplicaciones del electromagnetismo. Una de ellas fue el láser, cuyo principio se basó en un mecanismo que Einstein propuso en 1917 para explicar la distribución de radiación encontrada por Planck en 1900. En el capítulo XXX se detalla la base del funcionamiento de este dispositivo, que tiene una cantidad impresionante de aplicaciones, algunas de las cuales presentamos.

Finalmente, en el último capítulo, el XXXI, se indican algunos de los avances que se están dando en la actualidad, así como las tendencias hacia el futuro. La fotónica, o sea la transmisión de señales, ahora por medio de ondas electromagnéticas y usando fibras ópticas, está ahora al frente del desarrollo, con la posibilidad real de reemplazar a los dispositivos electrónicos. De hecho, se vislumbra que en el siglo venidero los aparatos no sean ya electrónicos sino fotónicos, convirtiéndose en realidad un sueño de excitantes posibilidades, sólo concebido en la ciencia ficción.

Por limitación de espacio el autor ha elegido sólo algunos de los más importantes avances tecnológicos del electromagnetismo; aun así ha sido necesario abreviar la información, ya que varios de ellos requerirían un libro completo.

En esta obra se plantea el hecho de que, en el caso del electromagnetismo, la frontera entre la ciencia y la tecnología no está bien delimitada; de hecho, es difícil hablar de frontera. Y es que las dos están tan interrelacionadas que no puede avanzar una sin la ayuda de la otra. Esta mancuerna ha sido la base de la civilización moderna.

InicioAnteriorPrevioSiguiente