XXXI. UN ATISBO AL FUTURO. LA FOTÓNICA
E
N LOS
últimos años se han estado llevando a cabo, en diferentes direcciones, esfuerzos de investigación tanto básica como tecnológica a fin de mejorar y modificar los diversos sistemas electrónicos que nos son familiares. Ilustraremos esto con algunos aspectos de lo que se está haciendo con las pantallas de televisión y de computadoras. Las que hasta ahora conocemos son pantallas cuya fabricación está basada en los tubos de rayos catódicos como los descritos en el capítulo XXII; recordemos que fueron inventados en el siglo pasado.Desde la década de 1970 se ha empezado a construir pantallas de cristal líquido; estas pantallas, de color gris, son muy frecuentes en calculadoras de mano y en relojes. La base de esta tecnología reside en el hecho de que si se hace pasar corriente eléctrica a través de un cristal líquido, sus propiedades ópticas se modifican y vemos de otro color aquel lugar por donde pasó la corriente, en este caso de color gris más oscuro. Una pantalla de cristal líquido consiste de dos vidrios paralelos con cristal líquido entre ellos. Conectando adecuadamente diferentes partes del cristal dentro de los vidrios, se puede hacer que formen números y letras.
Así se han logrado pantallas planas, en contraste con las curvadas de las televisiones familiares. Las pantallas planas tienen varias ventajas sobre las tradicionales. Una es que no ocupan tanto espacio, ya que no requieren del cañón electrónico; otra es que funcionan con mucho menor gasto energético.
Sin embargo, estos sistemas no forman imágenes a color.
En la actualidad se están investigando diferentes sistemas para producir pantallas planas. Un sistema de éstos, llamado de pantalla de cristal líquido con matriz activa, consiste en dos vidrios planos, paralelos (Figura 58), que se dividen en pixeles. Dentro de los vidrios se coloca una capa de cristal líquido orgánico, que tiene la propiedad de que sus moléculas alteran su orientación al estar sujeto a un voltaje; dependiendo de la orientación que tengan, estas moléculas bloquean parcialmente el paso de la luz polarizada que las ilumine.
![]()
Figura 58. Una forma de construir pantallas planas.
En la parte trasera de la pantalla se coloca un tubo de luz fluorescente que ilumina por detrás la pantalla (Figura 58). Esta luz se hace pasar por una película que polariza la luz. Sin entrar en mayor detalle diremos que la luz polarizada es aquella en la que los campos electromagnéticos que la componen tienen determinada dirección. Frente a cada pixel, en una delgadísíma película se coloca una matriz que contiene un pequeño circuito transistorizado que provee un voltaje, de tal forma que el cristal líquido que está dentro del pixel se orienta adecuadamente, creando pixeles más claros u oscuros. La luz que sale del pixel pasa por un filtro formado de colores verde, azul y rojo que, dependiendo de la intensidad de la luz que le llega, emite finalmente un haz de luz de color. De esta manera, en la pantalla se ve una imagen de color. Así, la pantalla puede tener el grueso de unos cuantos centímetros y estar colgada en la pared.
En la actualidad, en varios laboratorios industriales que se encuentran principalmente en Japón, se está llevando a cabo un vigoroso programa de investigación y desarrollo a fin de poner a punto esta tecnología de pantallas planas. Se puede afirmar que hacia fines de la década de 1990 ocurrirá un proceso en el que las televisiones y las computadoras sean remplazadas por pantallas planas.
Desde principios de la década de 1980 se ha empezado a utilizar radiación electromagnética, o sea de fotones, para la transmisión de señales. Estas señales se transmiten en cables de vidrio especial que han ido reemplazando a los cables metálicos, de cobre, en los que se envían las señales por medio de corrientes eléctricas. De esta manera se ha iniciado una revolución en las comunicaciones, que se vislumbra culminará en el próximo siglo con un cambio total en los dispositivos que ahora usamos basados en la electrónica.
¿Cómo es posible conducir luz a lo largo de una fibra? Para ello se utiliza el fenómeno de refracción que se discutió en el capítulo XIII. Según vimos, cuando un haz de luz pasa de un medio a otro cambia de dirección, o sea, se refracta (véase la figura 19). La relación entre el ángulo de incidencia i y el de refracción j es un número constante y depende solamente de la naturaleza de los dos medios. Más específicamente, para el lector que sepa trigonometría se le puede decir que la relación entre el seno del ángulo i y el seno del ángulo j es una constante que se llama índice de refracción relativo del medio 1 al 2. Ésta es la expresión cuantitativa de la ley de Snell.
Si el índice de refracción relativo es mayor que 1, lo cual implica que la velocidad de la luz en el medio 1 es menor que en el medio 2, al transmitirse el rayo se acerca a la normal.
Inversamente, si el rayo pasa de un medio a otro con índice de refracción relativo menor que 1, que significa que la velocidad de la luz en el medio 1 es mayor que en el medio 2, entonces cuando se transmite el rayo se separa de la normal.
Por ejemplo, para el caso de aire (medio l ) con agua (medio 2) el índice de refracción relativo es 1.33; para aire con cuarzo es 1.47; para aire con vidrio común, 1.53. Inversamente, para el caso en que la luz pasa de agua (medio 1) al aire (medio 2), el índice de refracción relativo es 0.752; para cuarzo con aire, 0.68; para vidrio con aire, 0.654.
Hay que mencionar que los valores de los índices de refracción dependen de la frecuencia de la onda electromagnética.
Supongamos que una fuente de luz emite rayos hacia la frontera que separa a dos medios, por ejemplo, vidrio y aire (Figura 59). Además, la fuente está metida en el medio en que la velocidad de la luz es menor, en este caso dentro del vidrio. El rayo que se transmite de vidrio a aire, al cruzar la frontera cambia de dirección y se separa de la normal. Ahora hagamos que la fuente de luz se mueva, siempre dentro del vidrio, de tal manera que los rayos incidentes, sobre la frontera formen ángulos de incidencia con la normal cada vez mayores (de A a D en la figura). Mientras mayor sea el ángulo de incidencia, mayor será el ángulo de refracción, pero este ángulo aumenta en una proporción mayor que el de incidencia. Llega un momento (rayo D en la figura 59) en que el ángulo de refracción es igual a 90ñ. Nos damos cuenta de que en este caso el rayo no se transmite al segundo medio. Esto ocurre cuando el ángulo de incidencia adquiere un valor que se llama ángulo crítico; para el caso vidrio-aire el ángulo crítico es de 40.8ñ. Si se sigue aumentando el ángulo de incidencia (rayos E, F, G de la figura 59), entonces ya no hay rayos transmitidos; los rayos se reflejan dentro del vidrio formando ángulos de reflexión iguales a los de incidencia (como ocurre en la reflexión común y corriente descrita en el capítulo XIII). Es decir, los rayos incidentes no logran escapar del vidrio. A ese fenómeno se le llama reflexión total.
![]()
Figura 59. Para el ángulo crítico de incidencia el rayo transmitido se propaga a lo largo de la superficie de separación; no hay transmisión. Para ángulos de incidencia mayores que el crítico, el rayo no se transmite sino que se refleja de regreso al medio I. Esto es la reflexión total.
Supongamos ahora que el vidrio tuviera dos paredes paralelas. Si un rayo de luz incide sobre una de las paredes, desde dentro del vidrio, formando con la normal un ángulo de incidencia mayor al crítico, entonces no se transmite y se refleja hacia dentro del vidrio. Al llegar a la otra pared, como llega con un ángulo de incidencia igual al inicial (por ser las paredes paralelas), tampoco se transmite hacia afuera y se refleja totalmente, de nuevo hacia dentro del vidrio. De esta manera, el rayo se va conduciendo dentro del vidrio hasta donde se desee, sin que escape al aire circundante. Esto mismo ocurre si las paredes no son planas pero sí paralelas, siempre que las curvas de la pared no sean tan cerradas que puedan en cierto momento hacer que el ángulo de incidencia sea menor al crítico, caso en el cual el rayo sí se transmite hacia el medio exterior y se escapa.
Por tanto, se puede transmitir un rayo de luz a través de una fibra usando el fenómeno de reflexión total y alimentando el rayo a un ángulo tal que forme, con la normal a las paredes, un ángulo de incidencia mayor al crítico.
Una fibra óptica consiste en un cilindro de material con un índice de refracción relativo al aire muy alto (Figura 60). En este caso la trayectoria que sigue un rayo de luz no es rectilínea, como en el caso de las paredes paralelas. Ahora los rayos se propagan en curvas en hélice. Si se ilumina un extremo de la fibra, el haz saldrá por el otro extremo, aun si la fibra tiene forma curvada.
![]()
Figura 60. Un rayo se transmite dentro de una fibra óptica debido a la reflexión total.
La idea de utilizar la reflexión total para transmitir señales luminosas fue demostrada por primera vez en Inglaterra por John Tyndall en 1870. Su principal problema fue que los materiales que utilizó ocasionaban pérdidas grandes, y como el haz de luz se dispersaba, la longitud útil fue muy pequeña.
No fue sino hasta 1950 cuando se empezó a pensar en serio en utilizar fibras ópticas en la iluminación remota, la transmisión de imágenes para aplicaciones médicas, como la endoscopía, en que por medio de una fibra óptica que se introduce en el cuerpo del paciente el médico puede ver con detalle lo que ocurre, por ejemplo, el corte que está haciendo con un bisturí. En algunas tiendas de lámparas venden fibras en forma curva que emiten luz solamente en su extremo.
En 1966 K. C. Kao y G. A. Hockham, de Standard Telecomunications Laboratories, de Inglaterra, fueron los primeros que propusieron la utilización de fibras de vidrio y luz de láser en lugar de conductores metálicos y electricidad en la transmisión de mensajes telefónicos. Propusieron el uso del láser en vista de que un haz de esta radiación no se dispersa.
Sin embargo, para poder usar fibras de vidrio fue necesario un arduo trabajo de investigación de las propiedades de los materiales, tanto para disminuir las pérdidas debidas a las impurezas en el vidrio, como para lograr una gran resistencia de las fibras, a fin de que no fuesen frágiles
La empresa Corning Glass, de Estados Unidos, inició en 1967 un proyecto de investigación sobre la utilización de vidrio para construir fibras ópticas, En 1970 obtuvieron, después de mucho esfuerzo, una fibra de vidrio de grueso igual al de un pelo, que tenía una atenuación razonable. Sin embargo, todavía faltaría una década de intensa investigación para lograr atenuaciones extremadamente pequeñas. No fue sino hasta 1983 que recibieron su primer pedido de la compañía telefónica MCI para el cableado de sus líneas con fibras ópticas. De esta manera se empezó a "hablar con luz".
Hay varias ventajas de las fibras ópticas sobre los cables metálicos que conducen electricidad. En primer lugar, con la luz de láser las pérdidas son notablemente menores.
En segundo lugar, con las fibras ópticas se incrementa notablemente la capacidad de enviar un mayor número de señales simultáneas, así, una fibra del grueso de un cabello puede transmitir 6 000 llamadas telefónicas, lo que se haría con un lío de alambres de cobre de 10 cm de grueso.
En tercer lugar, debido a que con las fibras ópticas la señal va contenida en un rayo de luz no hay posibilidad de que durante su transmisión se vea interferida por agentes ajenos, como ocurre con las señales eléctricas.
En cuarto lugar, son mucho más económicas.
En la actualidad se está llevando a cabo una transformación en muchos lugares del mundo y se están cambiando líneas eléctricas por fibras ópticas, como en los cableados telefónicos en las ciudades. Las fibras ópticas están remplazando a los conductores de cobre debajo de las calles y en las profundidades de los océanos.
La transmisión de comunicaciones por medio de fibras ópticas ha tenido ya un impacto tremendo en el manejo de transmisión de información. Ya se vislumbra que los sistemas con fibras ópticas operen a velocidades extremadamente altas, lo que incrementará en forma extraordinaria sus capacidades; por ejemplo, será posible que un par de fibras tenga capacidad para conducir 50 000 llamadas telefónicas simultáneas.
Se ha complementado el sistema de transmisiones a base de fibras ópticas con el desarrollo de láseres microscópicos, como fuentes de luz. Los primeros láseres pequeños, fabricados a base de materiales semiconductores, que fueron construidos en la década de 1970, eran del tamaño de un grano de sal de mesa y se pudieron adaptar fácilmente a las fibras ópticas.
Hoy en día, los láseres semiconductores son todavía más pequeños. Dos millones de ellos caben en un bloque del tamaño de una uña.
En la actualidad, en los circuitos electrónicos las conexiones tradicionales hechas con cables metálicos se están reemplazando por fibras ópticas y láseres semiconductores como fuentes de radiación. Sin embargo, una vez que la luz sale de la fibra, se necesita reconvertirla en señal eléctrica para alimentarla a los dispositivos electrónicos que usan electricidad. Por ejemplo, las conexiones entre chips de computadoras se pueden hacer por medio de fibras ópticas.
Hasta el momento las líneas telefónicas con fibras ópticas que se han colocado en muchas ciudades solamente conectan un poste con el siguiente, y del poste al hogar o la oficina todavía hay cableado con alambres que conducen electricidad. Una vez que éstos se cambien por fibras ópticas, hecho que a la larga ocurrirá, aumentará mil veces la capacidad de información y se podrán hacer cosas tales como comprar por medio de la televisión, instalar videófonos, que no solamente transmiten la voz sino que también envían imágenes, etcétera.
A la mezcla de fotónica con electrónica se le llama optoelectrónica.
De la misma forma en que las fibras ópticas han iniciado la transformación radical de las comunicaciones también han empezado una revolución en algunos aspectos de la medicina. Por medio de estas fibras se ha abierto una ventana hacia los tejidos del cuerpo humano. Insertando fibras ópticas a través de aberturas naturales o pequeñas incisiones, y ensartándolas a lo largo de arterias u otras trayectorias, los médicos pueden observar los pliegues del intestino, las cámaras del corazón y muchas otras regiones antes inaccesibles.
La primera aplicación médica de las fibras ópticas fue en sistemas de imágenes, llamados fibrascopios, y se llevó a cabo en 1957 por Basil L. Hirschowitz y Lawrence Curtis, de la Universidad de Michigan. Ellos construyeron el primer fibrascopio para observar el estómago y el esófago.
A partir de esa fecha los dispositivos se han refinado de tal forma que pueden inspeccionar prácticamente cualquier órgano o sistema del cuerpo humano.
Las fibras ópticas usadas en medicina han sido incorporadas en el fibrascopio, compuesto por dos manojos de fibras ópticas (Figura 61). Uno de ellos conduce luz visible y sirve para iluminar el tejido bajo escrutinio, y el otro se utiliza para transmitir la imagen.
![]()
Figura 61. Esquema de un fibrascopio que usa fibras ópticas.
El manojo que ilumina recibe la luz de una fuente de alta intensidad y a la salida ilumina el tejido. La luz reflejada se recoge en el otro manojo, que la transmite a algún medio que la transforma en una imagen de televisión o en una fotografía.
Se ha añadido al fibrascopio otro manojo de fibras ópticas que transmite radiación de láser con el fin de realizar alguna operación, como la eliminación de bloqueos de una arteria. En la figura 62 se muestra cómo se introduce en la arteria del brazo un fibrascopio que se dirige, a través de la aorta, hasta una arteria coronaria que está bloqueada. Si este bloqueo no es tratado produce un ataque mortal al corazón. Por medio del manojo de iluminación el médico puede ver la placa que bloquea la arteria. Entonces se acciona un globo elástico con el fin de impedir el flujo de sangre mientras dura la intervención. En seguida se envía un haz de radiación de láser por el tercer manojo de fibras ópticas, que por ser energético vaporiza la placa y destruye el bloqueo. Posteriormente se desinfla el globo y se restablece la circulación. De esta manera se puede remover el bloqueo sin necesidad de operaciones peligrosas y costosas.
![]()
Figura 62. Forma en que un fibrascopio elimina un bloqueo de una arteria coronaria.
Una importante aplicación de las fibras ópticas en la medicina ha sido la de proveer energía de radiación láser dentro del cuerpo, directamente a los órganos de interés, para realizar cirugía y terapia, eliminando en gran medida los procedimientos invasivos en los cuales tejidos sanos se deben cortar o eliminar con el fin de poder llegar al lugar de la enfermedad, como ocurre con las operaciones tradicionales. Así, con ayuda de las fibras ópticas ya empieza a ser posible el tratamiento de tumores y cánceres, pues se destruyen las células malignas sin dañar los tejidos vecinos.
Se están diseñando técnicas y procedimientos, con ayuda de fibras ópticas, para diagnósticos y tratamientos que no requieran anestesia y que se pueden llevar a cabo con toda seguridad en el consultorio del médico, reduciendo notablemente los riesgos propios de las operaciones, con el consiguiente ahorro económico. Estos procedimientos se podrán aplicar en los casos en que la cirugía es peligrosa o imposible, como a veces ocurre en niños o en personas de edad.
En varios laboratorios del mundo, por ejemplo en ATT Bell Laboratories de los Estados Unidos, se está llevando a cabo un notable esfuerzo de investigación para construir dispositivos que realicen con fotones, o sea con luz, funciones que hasta ahora se han logrado con medios electrónicos, como en los amplificadores, rectificadores, transistores, etc. En enero de 1991 se terminó de construir un prototipo de computadora en la que el procesador funciona por medios ópticos y las conexiones se realizan por fibras ópticas. Este procesador no utiliza electricidad sino luz para procesar la información. Aunque todavía en fase muy primitiva, el procesamiento fotónico ofrece la promesa de computadoras con tiempos de procesamiento de entre 1 000 y 10 000 veces menores a los que ofrecen las electrónicas.
Esto es un avance de lo que seguramente vendrá en el futuro, un cambio progresivo de la electrónica a la fotónica. Es posible que la fotónica no logre reemplazar completamente a la electrónica, pero realizará funciones que hasta ahora han estado fuera de la capacidad de la electrónica y la empezará a suplantar en muchos campos. Una notable ventaja posible será la conexión, por medios fotónicos, de componentes que realizan diferentes funciones y que se encuentran en distintos lugares, es decir, conexiones sin necesidad de cables, lo cual nos liberará de las restricciones físicas del cableado.
En la década de 1990 y posiblemente más allá, veremos la transición de la computación hacia la fotónica. Las conexiones inalámbricas de la fotónica proveerán computación prácticamente instantánea, ya que las señales electromagnéticas se propagan a la velocidad de la luz. Además debido a que los rayos de luz no interaccionan entre sí, las arquitecturas de computación paralelas en forma masiva serán factibles. Esto es muy importante, ya que con las conexiones tradicionales se está llegando al límite de lo que físicamente es posible en la miniaturización.
Otra posibilidad importante será el uso de la fotónica en interruptores y conmutadores, que junto con la transmisión y computación fotónicas tendrán un extraordinario efecto en la revolución de las telecomunicaciones que se está dando en la década presente.
Se puede afirmar que en el siglo
XX
fue el de la electrónica, mientras que elXXI
será el de la fotónica.![]()