IV. PROPIEDADES DEL NEUTRÓN TÉRMICO
NURIA SEGOVIA
ARIEL TEJERA
EL CONOCIMIENTO
de las propiedades de los neutrones térmicos contribuyó en forma sustancial a la producción de radioisótopos y al desarrollo de la energía nuclear. A este respecto la Escuela de Roma fue una de las que más participaron en el estudio de la interacción de los neutrones térmicos con la materia, siendo Enrico Fermi su figura más destacada.Enrico Fermi nació en Roma, Italia, el 29 de septiembre de 1901 en el seno de una familia perteneciente a la clase media baja. Su padre era administrador en los ferrocarriles, su madre tenía un firme sentido del deber y la disciplina, era inteligente y sentía gran devoción por su familia. Inculcó a sus hijos un concepto serio de la vida y el trabajo. Enrico aprendió a leer y a escribir desde muy pequeño, demostrando una retentiva prodigiosa al memorizar largos poemas. Asistió a la escuela pública desde los seis años. Era buen alumno, obtenía calificaciones altas y muy pronto demostró gran capacidad para las matemáticas, pues a los diez años ya comprendía problemas abstractos. A esa edad dejó la escuela primaria e ingresó al Gimnasio, el equivalente de la escuela secundaria y preparatoria, donde permaneció cinco años. La presión de trabajo era pesada aun para los alumnos más destacados. Su expediente académico sigue siendo en esta época excelente, posiblemente era el mejor estudiante de su clase. Además, debido a sus hábitos de orden y disciplina disponía de mucho tiempo libre que dedicaba, en gran parte, a sus estudios científicos. En esa época se expresaba con claridad porque su pensamiento era claro, pero aun en sus primeros artículos de 1927 y en su Introducción a la física atómica no hizo ningún esfuerzo por pulir su estilo descriptivo, utilizando un idioma plano y descuidado. Posteriormente, sin embargo, se volvió muy escrupuloso con respecto a usar un lenguaje muy preciso. A los catorce años compró varios libros de matemáticas y uno de física, titulado Elementos de física matemática de Andre Caraffa, escrito en latín y publicado en 1840.
Cuando Enrico cumple 18 años tiene ya una formación autodidacta en matemáticas y mecánica teórica equivalente a la que se adquiere en los primeros años de una carrera universitaria. Un amigo de su padre, el ingeniero Adolfo Amadei, asombrado por la precocidad del joven Enrico, le facilitó, durante cuatro años, libros sobre temas que comprendían desde trigonometría hasta mecánica teórica y análisis vectorial. Por recomendación de Amadei, Enrico se presentó a un concurso para ser admitido en la Escuela Normal Superior, dependiente de la Universidad de Pisa. Ganó el concurso escribiendo sobre el tema "Características del sonido", usando técnicas matemáticas propias de una disertación doctoral. En la Escuela Normal Superior se fomentaban los estudios avanzados y la investigación, actividades acordes al talento de Fermi.
En Pisa continúa su aprendizaje, principalmente autodidacta. En poco tiempo sus profesores no tuvieron ya nada que enseñarle y en su mayoría, tanto éstos como sus condiscípulos, reconocieron su extraordinaria capacidad. En 1921 publicó su primer artículo científico "Sobre la dinámica de un sistema rígido de cargas eléctricas en movimiento traslacional".
En 1922 presenta el examen de tesis universitario al que tenía derecho como alumno de la Escuela Normal Superior con el tema "La difracción de rayos X por cristales curvos y las imágenes obtenibles por este método", habiéndosele concedido el doctorado Magna cum laude. El diploma de la Escuela Normal lo obtuvo con la tesis titulada "Un teorema sobre la probabilidad y su aplicación en astronomía". En ese mismo año publica un artículo con el título "Sobre los fenómenos que ocurren en las cercanías de un meridiano terrestre", que confirma los profundos conocimientos que tenía de la relatividad general.
En 1923 da a luz un ensayo sobre "La masa en la teoría de la relatividad" en el que examina, entre otras cosas, la posible ubicación de la energía nuclear y la señala como la más espectacular consecuencia de la relatividad.
A finales de 1924 Fermi ocupó un puesto provisional en el laboratorio de física de la Universidad de Florencia, situado en Arcetri, lugar en el que Galileo pasó los últimos años de su vida. En 1925, junto con el físico Franco Rasetti, llevo a cabo una investigación de los efectos que tienen los campos magnéticos alternantes en las líneas espectroscópicas del vapor de mercurio.
Fermi leía ávidamente las revistas de física de circulación internacional, como la Revista de Física Alemana. Se enteró en este tiempo del descubrimiento del principio de exclusión, realizado por el físico austriaco Wolfang Pauli, quien pudo explicar cómo se van completando los diferentes niveles atómicos a medida que aumentan los protones del núcleo. El principio enuncia que dos electrones del mismo átomo no pueden tener la misma energía y los mismos momentos angulares.
El principio de exclusión resultó tener una aplicación universal para los electrones y para las partículas, como protones y neutrones, que tienen un momento angular propio. A este momento angular propio o intrínseco se le llama espín. Pauli se dio cuenta de que aplicando el principio de exclusión a los electrones atómicos sólo podían acomodarse en cada nivel energético dos electrones con espines en direcciones opuestas. Un electrón adicional en este átomo tendría que acomodarse en otro nivel energético, con nuevos valores de energía o de momento angular o de orientación del momento angular y desde luego con su correspondiente espín. Este principio permitió, auxiliado por las características químicas de los elementos, entender y perfeccionar la tabla de Mendeleyeev.
Desde 1900 se había desarrollado el modelo del gas de electrones para los metales siguiendo el modelo clásico de los gases ideales. Fermi se había preocupado de este problema y al conocer el principio de exclusión de Pauli lo aplicó a un nuevo modelo de gas tomando en cuenta el espín, deduciendo una ley de distribución de energías que es diferente de la clásica.
Fermi publicó su investigación en un artículo denominado "Sobre la cuantificación del gas monoatómico ideal", fechado en febrero de 1926; este trabajo fue también presentado en una famosa academia científica italiana y más tarde publicado en la Revista de Física Alemana con gran éxito. Paul André Maurice Dirac, famoso físico inglés, llegó a las mismas conclusiones que Fermi partiendo de otro punto de vista. El descubrimiento de ambos físicos se conoce actualmente como la Estadística de Fermi-Dirac y a las partículas descritas se les llama fermiones.
En noviembre de 1926 Fermi ganó el primer lugar en un concurso que le permitió asumir una cátedra con carácter vitalicio en la Universidad de Roma.
Uno de los fenómenos nucleares que atraían el interés de los físicos en ese tiempo era la emisión de electrones por algunos núcleos radiactivos. En particular, a los electrones de origen nuclear se les conocía desde principios del siglo con el nombre de partículas beta. Mientras se supuso que el núcleo estaba integrado por protones y electrones no pareció raro que se pudieran emitir estos últimos si el núcleo tenía un exceso de energía. Lo que llevó tiempo explicar fue que los electrones, en promedio, acarrean sólo la mitad de la energía que pierde el núcleo. Con el fin de mantener incólume el principio de la conservación de la energía, el físico Pauli inventó una partícula a la que Fermi bautizó con el nombre de neutrino. Esta es muy difícil de detectar, pero es capaz de llevarse la energía que le falte a un electrón emitido en una desintegración para completar la energía, característica que pierde el núcleo.
Surgió una nueva dificultad conceptual cuando se llegó a la conclusión de que las partículas que forman un núcleo son los protones y los electrones dados a conocer estos últimos por Chadwick en 1932. Durante su estancia en Roma, Fermi obtuvo una excelente preparación en las nuevas teorías físicas nucleares y en sus complicados métodos matemáticos. Con el auxilio de las nuevas concepciones hizo una investigación cuyos resultados se publicaron en la Revista de Física Alemana con el título de "Búsqueda de una teoría de los rayos beta", en 1934. Se trata de una teoría que describe cuantitativamente la emisión de electrones y neutrinos por el núcleo, "como un caso análogo", dice el mismo Fermi, "al de la emisión de fotones por el átomo". La teoría de Fermi permite calcular teóricamente por primera vez cuánto tiempo se espera que pase para que un material emisor de electrones tarde en ir convirtiendo por decaimiento sus neutrones en protones, emitiendo betas y neutrinos (figura IV.1). Además permite también calcular cómo se va a distribuir la energía que cede el núcleo entre las dos partículas.
Figura IV.1 (a) en el decaimiento b+ un protón del núcleo se transforma en neutrón, emitiendo un electrón positivo (b+) y un neutrino n. (b) En el decaimiento b- un neutrón del núcleo se transforma en protón, emitiendo un electrón negativo (b-) y un antineutrino v .
En la Universidad de Roma existía un grupo de eminentes matemáticos considerablemente mayores que Fermi; sin embargo, el intercambio de ideas y la cooperación intelectual eran difíciles.
Desde sus años de Pisa, Fermi había luchado por introducir la física moderna en Italia. Para ello dio varios pasos, el primero publicar artículos sobre física moderna para un amplio sector del público, incluyendo maestros de enseñanza media. El segundo fue escribir un libro de texto sobre física atómica y el tercero seleccionar y preparar físicos jóvenes. Esto último, que era lo más importante, resultó ser lo más difícil. En efecto, el número de estudiantes de física en las universidades italianas era reducidísimo, ya que la física se enseñaba como materia complementaria a los ingenieros, químicos, médicos, etc. De las dos grandes innovaciones de esa época en física, la teoría de la relatividad y la mecánica cuántica, sólo Fermi y el destacado físico Enrico Persico estaban familiarizados con ellas.
Cuando Fermi llegó a Roma, intentó transformar el Instituto de Física en una institución de primera categoría que pudiera equipararse con las mejores del mundo. Una de las primeras tareas fue la de fortalecer la física experimental, lo cual resultó más difícil que consolidar la física teórica debido a que requería apoyo técnico y financiero mucho mayor. Era manifiesta y urgente la necesidad en Roma de un físico experimental joven y activo, eligiéndose para esto a Franco Rasetti, quien llegó de Florencia a principios de 1927. Rasetti, en pocos años, logró reputación internacional por sus trabajos acerca del efecto Raman y monto un laboratorio de espectroscopía. Emilio Segré, Giovanni Enriques y Ettore Majorana se unieron en 1927 al grupo, pero era evidente que en términos científicos Fermi era la voz italiana más autorizada en física moderna. Fermi organizó un seminario con los jóvenes estudiantes donde se tocaban temas del interés de los integrantes. Segré afirmó que en esa época jamás tuvieron un curso regular.
Si le preguntábamos a Fermi sobre toda un área que ignorábamos él se limitaba a recomendarnos un buen libro sobre el tema. Sin embargo, si le preguntábamos sobre un tema específico, Fermi improvisaba una hermosa conferencia sobre la teoría. Uno recibía la impresión de que había estado estudiando por mucho tiempo y que había preparado cuidadosamente la conferencia. De esta manera se cubrían muchos temas en un nivel equivalente a los primeros cursos de posgrado de una universidad norteamericana.Fermi, que por aquel tiempo trabajaba sobre todo en cuestiones teóricas, también se interesaba en los trabajos experimentales en el laboratorio de Rasetti. Este ejerció una influencia enorme sobre Fermi y el grupo en su conjunto.
La sede de toda esta actividad era el viejo laboratorio de física de la Universidad de Roma. Este edificio estaba perfectamente adecuado para el tipo de trabajo científico que se desarrollaba en los años veinte. El equipo era aceptable, sobre todo en materia de espectroscopía óptica, e incluía algunos aparatos auxiliares de buena calidad. El taller era anticuado, pero la biblioteca excelente.
El conocimiento y los intereses de Fermi abarcaban toda la física. Prefería los problemas concretos y desconfiaba de teorías demasiado abstractas o generales; en cambio, cualquier problema concreto en cualquier área de la física lo fascinaba y constituía un reto para su ingenio. Un ejemplo notable de esta forma de proceder lo constituye su teoría cuántica de la radiación. Fermi, había leído los artículos de Dirac y comprendió los resultados que obtuvo. Sin embargo, el método empleado por Dirac era desconocido para Fermi por lo que decidió reformular la teoría de un modo que le fuera más familiar en términos matemáticos.
Con el descubrimiento del neutrón por Chadwick en 1932, se abrió la posibilidad de bombardear los núcleos con un proyectil de muy intensa acción nuclear sin que fuera rechazado por las cargas eléctricas nucleares.
La técnica para construir una fuente de neutrones empleada por Enrico Fermi fue encerrar, en un tubo de vidrio hermético, polvo de berilio en una atmósfera de radón (figura IV.2). Esta fuente emitía 1 000 000 de neutrones por segundo, cuyas energías individuales estaban repartidas desde cero hasta unos 8 000 000 de electrón-voltios. Las fuentes actuales de neutrones se fabrican usualmente de berilio mezclado con radio, americio o plutonio, o bien, son de californio. En el laboratorio de Roma, Fermi y sus colaboradores sometieron al bombardeo con neutrones no solamente a los elementos ligeros que se habían logrado transmutar ya con las partículas cargadas, como protones, de neutrones y partículas alfa, impulsadas en los primeros aceleradores de partículas, sino que también fue posible transmutar elementos más pesados. De hecho, para 1938 habían sometido al flujo de neutrones la mayor parte de los elementos conocidos. En estos experimentos se había descubierto que para un buen número de elementos el bombardeo producía el isótopo de número atómico inmediato superior al elemento bombardeado, es decir, que algunos elementos capturaban un neutrón incidente, convirtiéndose en un radioisótopo del mismo elemento y este era, por lo general, emisor de partículas beta negativas. En 1934 Fermi descubrió que frenando los neutrones a través de una placa de parafina aumentaba hasta cientos de veces su poder de activación, como en el caso de la plata (plata natural-109), que al absorber un neutrón se transmuta en el isótopo radiactivo plata-110 que decae, emitiendo betas negativas, en cadmio-110 (figura IV) Este mismo tipo de reacción se había observado también en los isótopos vanadio-51, manganeso-55, cobre-63, arsénico-75, bromo-79, yodo-127, iridio-191 y 193, oro-197, etc. Fermi había descubierto la efectividad de estos neutrones, que se denominaron térmicos.
Figura IV.2. dibujo esquemático de una fuente de una fuente de neutrones de radón-222 y berilio-9. La reacción es: Berilio-9 + a ñ carbono - 12 + energía.
Figura IV.3. Transmutación de un isótopo de plata, por obsorción de un neutrón térmico, en un isótopo de cadmio. La reacción es: Plata - 109 + n ñ plata - 110 ñ cadmio - 110 + b-
A medida que los investigadores sometían elementos cada vez de mayor número atómico al flujo de neutrones se preguntaban: ¿Qué pasaría cuando llegaran al más pesado, al uranio? La respuesta esperada era la producción de elementos transuránicos, con número de masa mayor que los 238 nucleones del uranio y con más protones que los 92 de este elemento. Si esto llegara a suceder con el uranio, sería de esperarse la formación del isótopo 239 del uranio, que por desintegración beta generaría un nuevo elemento, con 93 protones y quizás, si este nuevo elemento no resultara estable, se podría esperar que a través de sucesivo decaimientos beta se obtuvieran elementos transuránicos de número atómico mayor que el 93. En junio de 1934 Fermi publicó en Nature un artículo sobre sus investigaciones en la Universidad de Roma con el título "La posible producción de elementos de número atómico mayor a 92". Entre otros comentarios importantes hace notar que de 68 elementos bombardeados con neutrones había logrado activar 47, de estos elementos, en el caso del aluminio, cloro y cobalto, el radioisótopo formado por bombardeo resultó ser el de un número Z-2. En el caso del fósforo, azufre, hierro y cinc, el número atómico del elemento formado fue Z-1. En los casos del bromo, el yodo y la plata, el producto fue un isótopo del elemento bombardeado. En algunos casos se alcanzó un estado estable mediante la transformación de un neutrón del núcleo bombardeado en un protón, y la expulsión de un electrón negativo, pasando el elemento de Z a Z+1 (figura IV.4).
Figura IV.4. Tipos de reacciones nucleares que dan lugar a la radiactividad artificial. Z es el número atómico correspondiente al número de protones del núcleo original de masa M.
En los casos en que se bombardeó con neutrones al uranio y al torio, se descubrió que se activaban muy intensamente dando lugar a una serie compleja de radioisótopos. En el caso del uranio bombardeado se detectaron emisiones beta con vida media de 10s, 40s, 13 m, y por lo menos dos emisores beta adicionales con vida media comprendida entre 40 minutos y un día. Las investigaciones de Fermi y sus colaboradores para identificar el producto de 13 minutos eliminaron a posibles isótopos adyacentes. La conclusión de Fermi fue que posiblemente se había formado el elemento 93, y sugirió la posibilidad de que también podían estar involucrados los elementos 94 y 95. El esfuerzo de los investigadores de este acertijo se orientó hacia la separación e identificación irrebatible de los transuránicos y entraron en competencia el grupo de Joliot-Curie en Francia, el de Hahn en Alemania y el de Fermi en Italia.
Durante cuatro largos años se mantuvo la hipótesis de los transuránicos, publicándose docenas de artículos sobre el tema, incluso un trabajo de la señora Ida Noddack, quien consideró débil la conclusión de Fermi de que se había formado un elemento transuránico, ya que antes de llegar a esta conclusión extrema se tenían que eliminar primero todos los elementos de la tabla periódica, pensando que el uranio hubiera podido estallar de alguna manera y formar otros elementos más ligeros. Esta aguda observación, que de haberse examinado con cuidado habría aliviado el penoso y frustrante trabajo de cuatro años, no fue considerada en su justo valor porque era contraria a los conceptos de estabilidad nuclear de aquella época.
En el año de 1938 Fermi recibió el premio Nobel por sus trabajos con neutrones térmicos y, debido a la situación política que se presentaba en Europa y a que su mujer era de origen judío, ya no volvió a Roma después de la visita a Estocolmo y viajó a Estados Unidos. Mientras Fermi huía de Europa, el grupo de los alemanes trabajaba y descubría la fisión nuclear.
La noticia de la fisión nuclear propuesta por Lise Meitner y Otto Hahn (véase el capítulo V) la recibió Niels Bohr de boca de Otto Frisch en los primeros días de enero de 1939, cuando abandonaba Copenhague en viaje a Estados Unidos. Pronto se dio cuenta de que había que añadir un producto de reacción nuclear más en la lista de posibles decaimientos nucleares, y de que al lado de la emisión de partículas alfa o gamma hay un lugar natural para la fisión nuclear.
Hacia fines de 1939 era evidente que la enorme energía producida en la fisión nuclear podía aprovecharse en una reacción en cadena gracias a los neutrones liberados en estos eventos y así se hizo público en el ambiente científico europeo.
LA CARRERA MÁS TRÁGICA DEL SIGLO
En 1936, dos años antes de descubrirse la fisión, la opinión muy autorizada de E. Rutherford fue que no había ninguna posibilidad de producir energía nuclear que pudiera ser de utilidad; pero no todos los físicos se adherían a este punto de vista e inmediatamente después de que el grupo de Berlín anunció la fisión y ésta fue confirmada experimentalmente por Otto Frisch en febrero de 1939, se dieron cuenta de que la tan largamente esperada posibilidad había llegado. La conclusión del profesor Frisch fue confirmada en varios laboratorios de Estados Unidos, entre otros, por los de las Universidades de Columbia y de California, antes de que terminara el mes de febrero.
Muchos científicos que sintieron amenazada su libertad e incluso su vida abandonaron Europa y algunos se refugiaron en Estados Unidos. Entre éstos, Enrico Fermi encontró acomodo en la Universidad de Columbia y Albert Einstein en la de Princeton.
Como aún no había caído el telón del secreto sobre la energía nuclear, en la reunión de primavera de la Sociedad de Física Norteamericana, en abril de 1939, se discutió abiertamente la fisión del uranio-235 eslabonado a una reacción en cadena mantenida con los mismos neutrones producidos al fisionarse. Niels Bohr dijo que bastaba bombardear con neutrones térmicos una pequeña cantidad de uranio-235 para producir una explosión nuclear lo suficientemente potente como para volar el laboratorio y todo lo que estaba a su alrededor.
Los trabajos científicos sobre la fisión nuclear abrían la puerta para la producción de neutrones unidos a este fenómeno. En los meses inmediatamente posteriores al artículo aparecido en una revista alemana de ciencias de la naturaleza (1939) en la que Hahn y Strassmann dieron a conocer la fisión, quedaron establecidas las bases teóricas y experimentales que llevarían en los años siguientes a la construcción del primer reactor nuclear.
La idea básica para la reacción en cadena fue aislar en bloques diferentes el uranio y el material moderador destinado a frenar los neutrones rápidos que se produjeran por la fisión, de manera que estos neutrones por colisiones sucesivas perdieran energía, volviéndose térmicos, y pudieran así emerger del moderador para incidir a su vez en los bloques de uranio produciendo, algunos de ellos, nuevas fisiones. Éstas, a su vez, producirían nuevos grupos de neutrones rápidos que seguirían el mismo proceso anterior, manteniendo la reacción. El uranio que se utilizó fue principalmente uranio metálico y sus óxidos. El uranio natural es una mezcla de los isótopos 238, 234 y 235 en tina proporción del 99.276%, 0.7196% y 0.0057% respectivamente. El uranio-238 es útil para la producción de plutonio-239; el uranio-235 es altamente fisionable por neutrones termalizados y en la práctica no se toma en cuenta el uranio-234 por su baja proporción. En un material moderador los neutrones rápidos provenientes de la fisión pierden energía por colisiones sucesivas. Son buenos moderadores aquellos que absorben un mínimo de neutrones. Ejemplo de éstos son el berilio, el deuterio (usado como agua pesada), el grafito y, en mucha menor medida, la parafina. En cambio, el cadmio y el boro son poderosos absorbedores de los neutrones térmicos, y en menor proporción el hidrógeno, usado frecuentemente como agua natural.
Durante 1941, en la Universidad de California se produjeron neutrones bombardeando un blanco de berilio con un haz de deuterones y fueron termalizados al pasar por un bloque de parafina al que se había incorporado 1.2 kg de nitrato de uranio. Se produjo, por reacción nuclear; neptunio-239, el que por decaimiento radiactivo beta produce plutonio-239. El plutonio-239 es un emisor de partículas alfa y tiene una vida media de 24 360 años; el neptunio-239 decae por varios grupos de partículas beta con una vida media de 2.35 días. Debido a esto una muestra de neptunio-239 al cabo de un mes se ha convertido casi toda en plutonio (figura IV.4).
Después de dos días de bombardeo se produjo medio microgramo de neptunio, que al decaer en plutonio se sujetó a la prueba de fisión soteniéndolo a un flujo de neutrones térmicos. El resultado fue sorprendente, el plutonio-239 era 50% más fisionable que el mismo uranio-235. Esto sucedió el 28 de marzo de 1941.
Debido al secreto voluntario que se impusieron los investigadores del grupo de la Universidad de California, este descubrimiento no se hizo público sino hasta después de que terminó la segunda Guerra Mundial.
Aquellos neutrones que fueran capturados dentro del uranio pasarían a convertir el uranio-238 en valioso plutonio. Este descubrimiento abrió la posibilidad de producir un segundo explosivo nuclear en el combustible mismo de un reactor. El diseño del reactor tendría que ser tal que se pudiera mantener la reacción en cadena al mismo tiempo que se produjera la máxima cantidad de plutonio. Se veía bien claro que el éxito iba a depender de la pureza de los materiales y del buen diseño.
Los primeros cálculos mostraron que el aprovechamiento y la producción de los neutrones dependía del volumen del reactor y que una de las pérdidas importantes se iba a deber a la superficie de éste; por lo que existe un volumen crítico de uranio y moderador por debajo del cual no hay reacción en cadena.
Los cálculos y la experiencia pusieron un límite inferior de varias toneladas de uranio y moderador, lo que creó un problema técnico de muy difícil solución, porque en aquella época la producción de uranio de la pureza necesaria era prácticamente nula comparada con las cantidades requeridas. Como moderadores se ensayaron en un principio el grafito y el berilio; más tarde se dispuso de agua pesada en cantidad suficiente como para ensayar un reactor prototipo. La decisión en este tiempo recayó sobre el grafito y éste fue el moderador que se usó por varios años.
Las tres instituciones de los
EUA
más activas en el problema de la fisión en esta época eran las Universidades de California, Columbia y Princeton. Antes de que terminara 1941 se habían construido en la Universidad de Columbia bloques de grafito en los que se introducían fuentes de neutrones, con el fin de determinar en qué forma descendía su energía. Más adelante se incluyó uranio en el bloque con el fin de determinar el número de neutrón es que se producían en la fisión. Uno de estos bloques experimentados en julio de 1941 consistió en un cubo de grafito de unos dos metros y medio de lado, que contenía 2 toneladas de óxido de uranio. Con él, Fermi y sus colaboradores intentaron determinar el factor de reproducción de los neutrones debido a la Fisión. Si este factor era menor a la unidad indicaba que el número de neutrones perdidos era mayor que el de los producidos por la fisión, y si era mayor a la unidad era la señal esperada de que el número de neutrones que se producían en la fisión quedaba por encima de los que se perdían por impurezas en el grafito, captura en el uranio-238 o fuga por las paredes y, por lo tanto, podían producir la reacción, en cadena. A pesar de que era obvio que estos bloques de grafito eran demasiado pequeños para sustentar dicha reacción servirían indudablemente para calcular el tamaño crítico de un reactor y también para ensayar la pureza de los materiales nucleares.Al finalizar 1941 los experimentos efectuados con los bloques permitieron concluir que los materiales aún no eran de suficiente calidad y por esta razón no se pudo determinar con precisión el diseño óptimo del reactor crítico, es decir, aquel que mantiene la reacción en cadena.
Tras el ataque a Pearl Harbor, el 7 de diciembre de 1941, los Estados Unidos entraron a la segunda Guerra Mundial.
El 13 de agosto de 1942, el ejército de Estados Unidos decidió tomar parte en el desarrollo de un explosivo nuclear y se creó el Proyecto Manhattan (Manhattan Engineer District) con la meta de producir energía nuclear con fines militares antes que Alemania.
Para julio de 1942, la industria había aumentado significativamente la producción de uranio de calidad nuclear, logrando obtener toneladas de material, y se había mejorado el grafito, obteniéndose un producto que absorbía 200% menos neutrones que el mejor producto fabricado antes.
Los esfuerzos separados de la Universidad de Columbia, con Fermi y la Universidad de Princeton, con E. Wigner, se unieron en la Universidad de Chicago con el nombre de Laboratorio de Metalurgia, nombre que sirvió para encubrir el de Proyecto Plutonio. Este laboratorio fue dirigido por el premio Nobel A. H. Compton. En este laboratorio, después de varias pruebas, se lograron ensayar los nuevos materiales. Los datos obtenidos indicaron que los materiales y el diseño eran lo suficientemente buenos como para iniciar la construcción de un reactor nuclear.
Para el 7 de noviembre de 1942 se habían acumulado aproximadamente ocho toneladas de uranio natural muy puro, en uno de los salones para jugar frontenis del estadio Stagg Field de la Universidad de Chicago. Además se tenían varias toneladas de óxido de uranio y de grafito, cortado este último material en bloques de unos cuarenta centímetros por lado. El acto de apilar los bloques de grafito originó el nombre de pila para este primer reactor; nombre que no sugería nada de lo que estaba pasando en los sótanos del estadio.
Presionados más por la disponibilidad del material que por el diseño óptimo del reactor, se decidió apilar los bloques de grafito en una configuración esférica sostenida por una estructura de madera. El uranio se intercalaba entre los bloques de grafito hasta formar un cubo.
Por recomendación del profesor Compton, la pila iba a quedar encerrada herméticamente dentro de la cubierta cúbica de un globo aerostático, con el objeto de hacer el vacío en ella y disminuir la captura de neutrones por el nitrógeno del aire, condición supuesta para alcanzar el punto crítico.
A fin de controlar el número de neutrones que se produciría en la pila se dispuso de un buen número de detectores de neutrones y se insertaron barras de cadmio y de acero boratado capaces de absorber los neutrones producidos por la fisión y evitar que la pila quedara fuera de control. Durante el mes de noviembre se procedió a colocar capas de grafito y de uranio procurando que entre los lingotes de uranio se intercalaran unos cuarenta centímetros de grafito. El uranio metálico ocupó el centro de la pila y el óxido de uranio sirvió para completar el cubo.
El primero de diciembre se terminó la undécima capa y la esfera alcanzó tres cuartas partes del volumen total. Ya entrada la noche, al iniciarse la colocación de la undécima capa, alguien creyó oír que los marcadores acústicos de neutrones indicaban un ascenso y el encargado en turno, el doctor Zinn, se dio cuenta de que se estaban acercando al punto crítico antes de que se llegara a terminar la esfera. Al día siguiente, el 2 de diciembre de 1942, ante la presencia de los doctores Fermi, Szilard, Anderson, Weil, Compton, Winger y otros más, una vez terminada de colocar la duodécima capa de grafito y uranio y de asegurarse de que los sistemas de control funcionaban satisfactoriamente, se procedió a extraer todas las barras de control menos una, de cadmio, que se utilizó como control fino. Ésta era la primera vez que se manipulaba un reactor nuclear y nadie sabía a ciencia cierta qué iría a pasar. Desde luego, no se esperaba una explosión nuclear si el reactor quedaba fuera de control, por lo menos no de la envergadura de una bomba. Quizás, si algo iba mal, el reactor se calentaría demasiado y los gases calientes arrastrarían vapores de uranio contaminando un área grande. Con el fin de aumentar las medidas de seguridad, dos jóvenes estudiantes se ofrecieron como voluntarios para vigilar el reactor desde una plataforma, durante el acto de llevarlo al punto crítico teniendo cada uno en las manos una cubeta con una solución concentrada de sales de cadmio, y estuvieron alertas para sofocar cualquier aumento inesperado en la actividad.
Figura IV.5. Producción de plutonio-239 a partir del bombardeo de uranio-238 con neutrones. El uranio-239 decae a neptunio-239 emitiendo betas negativas con una vida media de 23.5 minutos. El neptunio-239 decae a plutonio-239 emitiendo betas negativas con una vida media de 2.34 días.
Después del refrigerio, los científicos se reunieron en el improvisado laboratorio del reactor y con todas las otras barras de control fuera, se procedió a sacar la última muy lentamente, durando esta operación dos horas. El número de neutrones contados fue aumentando a medida que esta última barra se extraía de la pila, y cada vez el aumento en el número de neutrones era mayor al anterior. Para las tres y media de la tarde el aumento era tan grande que no quedó ninguna duda de que el reactor había alcanzado su punto crítico. Por primera vez el fuego de la fisión había ardido sobre la Tierra. Todas las barras fueron introducidas de nuevo en la pila y la última capa, la decimotercera completó el primer reactor nuclear.
¿En que etapa irían los alemanes? ¿Ya estaría funcionando su reactor? Era indiscutible que dada la calidad de los técnicos y científicos alemanes, y disponiendo de una industria de primera calidad, podrían haber contado desde varios años atrás con el apoyo económico suficiente para llevar una gran delantera a los aliados. Se sabía que en el Instituto Wilhelm Kaiser se habían reunido doscientos científicos bajo la dirección del profesor Weizsaecker, uno de los descubridores de las reacciones nucleares en las estrellas. En mayo de 1940, Noruega fue ocupada por tropas alemanas que se adueñaron de la planta productora de agua pesada de Vemork, exigiendo que aumentara la producción a 1.5 toneladas anuales en 1940 y a tres toneladas anuales en 1942. El 28 de febrero de 1943 un grupo de comandos aliados atacó con éxito la planta y destruyó la sección de alta concentración resguardada en los sótanos de la planta, derramando una considerable cantidad de agua pesada. El 13 de noviembre, un grupo de bombarderos de Estados Unidos atacó la planta hidroeléctrica y la de electrólisis, perdiendo los alemanes parte de las instalaciones, por lo que decidieron trasladar el equipo restante a Alemania. Los aliados hundieron en febrero de 1944 el ferry noruego en que se transbordaban varias toneladas de agua pesada hacia los laboratorios alemanes, cantidad que hubiera servido para intentar seriamente la construcción de un reactor nuclear crítico.
A partir de 1942 los grupos ingleses que estaban investigando y diseñando, en las diversas etapas de los reactores, la separación gaseosa del uranio-235 y el ensamble del explosivo nuclear, se trasladaron a Canadá y a Estados Unidos, contribuyendo al esfuerzo militar norteamericano.
En 1953 Fermi (figura IV.6) efectuó su último experimento sobre la dispersión pion-neutrón y en el verano de ese año analizó los datos en Los Álamos. En 1953 y 1954 escribió algunos artículos teóricos sobre el origen de los rayos cósmicos, la producción múltiple de piones y sobre la aplicación de las computadoras en un experimento teórico sobre las soluciones de los problemas de vibración no lineal. Se inician en Rochester, Berkeley y Chicago experimentos acerca de la polarización de protones en dispersión de alta energía. Fermi estaba interesado en ver si el acoplamiento de órbitas y espín podía ser responsable de la polarización de la dispersión de alta energía. El borrador de su último artículo fue sobre la "Polarización de protones de alta energía dispersados por núcleos".
Fermi murió el 29 de noviembre de 1954, a los cincuenta y tres años, en Chicago.
Sus logros más importantes fueron: el descubrimiento de la estadística que lleva su nombre, la teoría de los rayos beta y el trabajo experimental sobre los neutrones.
La estadística de Fermi-Dirac, descubierta independientemente por Dirac fue la clave para establecer la teoría de los metales y los modelos estadísticos del átomo y del núcleo, aunque el principio de Pauli es el concepto fundamental en ese campo.
La importancia de la teoría de los rayos beta ejerció una notable influencia en el estudio de las partículas elementales. Ésta fue la contribución más importante que hizo Fermi en el campo de la física teórica.
El trabajo sobre los neutrones fue fundamental por el descubrimiento de los neutrones térmicos, y a partir de él se logró realizar la reacción en cadena, que dio lugar al control de la energía nuclear.
Fermi se dedicó por entero a la ciencia. Fue un individuo que llegó a las más altas cumbres tanto en lo teórico como en lo experimental y que dominaba toda la física.
La influencia de Fermi en la física italiana fue enorme. Al introducir la física teórica en la formación académica inició un movimiento que en poco tiempo sacó a Italia del atraso en que se encontraba, para colocarla en una situación de prestigio en el campo de la física. La importancia de Fermi en Estados Unidos también es notable, aunque en menor grado. Sin embargo, uno de los laboratorios más importantes y reconocidos actualmente es el Fermi Lab de Los Álamos.
Figura IV.6. Enrico Fermi en la década de los años cuarenta. Dibujo de Ariel Tejera y Olaf Rivera.
G. Hermann, Five Decades Ago: From the "Transuranies" to Nuclear Fision. Angem. Chema. Int., Ed. Engl., 29 481-508, 1990.
Segre, E. Fermi,
CONACYT
, 1987.H. W. Smith, Atomic Energy for Military Purposes, Princeton University Press. 1948.
![]()
![]()
![]()