Corresponde a la sesi�n de GA 2.13 DESC�BRELAS
Es importante conocer este tipo de ecuaciones y dominarlas, ya que sirven para resolver una gran variedad de problemas, los cuales se pueden trazar e interpretar gr�ficamente.
Las ecuaciones de primer grado con dos inc�gnitas son conocidas como ecuaciones indeterminadas, ya que tienen una infinidad de soluciones. Tambi�n se les conoce como ecuaciones lineales, en virtud de que su gr�fica es una l�nea recta.
Los problemas que aqu� se plantean ayudar�n a comprender m�s f�cilmente las ecuaciones con dos inc�gnitas, por ejemplo:
Los datos desconocidos se indicar�n con dos literales: el primer examen se identifica con la x y el segundo examen con la y, por lo tanto se formula la siguiente ecuaci�n:
Hay que buscar los valores de las literales, por lo que se procede a despejar y y asignarle valores arbitrarios a x.
Al dar valores arbitrarios a x, se efectuar�n las operaciones y se obtendr�n los valores de y, para esto se construir� una tabla que refleje algunas soluciones.
si x = 0
si x = 6 si x = 8 si x = 10 | y = 10 - 0
y = 10 - 6 y = 10 - 8 y = 10 - 10 | y = 10
y = 4 y = 2 y = 0 |
Como puede observarse, �stas son algunas de las soluciones para el problema planteado:
De lo anterior, se observa que para cualquier valor asignado a x existe uno para y, por lo que no hay una soluci�n �nica para el problema.
Si se considera que cada pareja de valores corresponde a las coordenadas de algunos puntos, la tabulaci�n quedar�a as�:
Y su representaci�n gr�fica es la siguiente:
Como puede apreciarse en la gr�fica, la soluci�n de la ecuaci�n es una l�nea recta, donde cada uno de los puntos de la l�nea resultante representa una pareja de coordenadas de x y y que hacen verdadera la ecuaci�n.
Al analizar el problema se sabe que se necesitan x monedas de $20.00, as� como y monedas de $ 10.00, quedando la ecuaci�n:
Este problema tiene muchas soluciones que pueden satisfacer las condiciones dadas. En la siguiente tabla, se dan diferentes valores a las inc�gnitas para apreciar las diversas soluciones que tiene:
De las soluciones consideradas se obtienen algunas parejas de valores de x, y, que satisfacen lo requerido en la
ecuaci�n del problema y, si se considera que esas parejas son coordenadas de puntos, se tiene la siguiente tabulaci�n:
Con los puntos A, B, C, D y E se obtiene una l�nea, quedando la representaci�n gr�fica as�:
Mediante la gr�fica trazada se pueden dar diversas lecturas a las respuestas de la pregunta del problema, por ejemplo:
Por todo lo anterior se puede decir que es importante conocer, dominar y aplicar las ecuaciones con dos inc�gnitas, para resolver muchos de los problemas que pueden tener varias soluciones.