II. LA SUPERFICIE: ESE SER IMAGINARIO

 

Unos dicen que, puesto que el mundo exterior existe, hay que negarlo;
otros que, puesto que no existe, hay que inventarlo;
otros que sólo existe el mundo interior.
OCTAVIO PAZ

EN EL prólogo a un bestiario, necesariamente incompleto, denominado El libro de los seres imaginarios, Jorge Luis Borges y Margarita Guerrero se disculpan por no incluir al príncipe Hamlet, ni al punto, la superficie y el hipercubo. Todo esto nos lo dicen como parte del discurso en que anuncian que no todos los resultados de la imaginación de la Humanidad se incluyen en su libro.

En un esbozo de doctrina del conocimiento, señalan Borges y Margarita Guerrero que casi todo el Universo debería aparecer en una obra completa que llevase el nombre de su libro. La inclusión de cada uno de nosotros estaría, tal vez, justificada. Lo intrigante: ¿qué quedaría fuera?

Preferimos imaginar que Borges se refiere a la superficie de los matemáticos: ese ente que ellos representan en nuestro espacio de tres dimensiones con algo que muchas veces parece una sábana. Pero no tiene espesor, nos advierten de inmediato los señores matemáticos. De la misma manera, nos dicen, el punto no tiene extensión: no hay puntos "gordos". Agreguemos la recta que se extiende desde el infinito y va hasta el infinito y casi es para sentirse frustrados por no tener un comentario borgiano de los imaginarios seres que son el punto, la recta y el hipercubo. Tendremos que vivir con la pregunta de cómo habría descrito Borges estos términos matemáticos tan serios. Las respuestas a estas inquietudes serían sólo el comienzo de la aclaración que pretendemos en este capítulo. Como se verá más adelante, las superficies varían dependiendo de lo que se quiera estudiar.

El concepto intuitivo de que precisamente donde termina un cuerpo hay una superficie, es también una idealización que resulta bastante cómoda en muchas circunstancias. No deja de estar emparentada con la superficie matemática pero, cuando los detalles microscópicos son visibles y se le ve el grano a la materia deja de ser práctica y la comodidad desaparece. Lo que hay más allá de esa superficie puede ser otro cuerpo, o un líquido, o la atmósfera, o... el vacío.

Alguien, tratando de allanar el camino, nos dirá que la superficie es el lugar de los puntos que delimitan un cuerpo. Sí, pero al mirar microscópicamente esas delimitaciones encontramos que la forma de la superficie es muy complicada o el concepto muy difícil —incluso imposible— de aplicar. Por ejemplo, al considerar la región donde termina un líquido y empieza la atmósfera vemos que las moléculas del líquido saltan continuamente. Algunas se van para siempre, otras regresan, algunas que inicialmente estaban en la atmósfera, fuera del líquido, caen a él. Cuando el sistema (líquido y atmósfera) está en equilibrio encontramos que, en promedio, las moléculas que abandonan el líquido en un segundo son iguales en número a las que caen a él durante el mismo intervalo de tiempo.

La superficie de un diamante se nos antoja como la respuesta de la naturaleza al concepto de una frontera uniforme y lisa que separa la región donde la luz es aprisionada hasta que encuentra su salida para producirnos esa sensación diamantina, similar a la de Arcadio Buendía al ver el hielo y sentirse obligado a afirmar que se trataba del diamante más grande del mundo. Pero ni en el diamante ni en el hielo subsiste la imagen de tersura al pasar al examen microscópico: muchos átomos se encuentran fuera de lugar, se forman terrazas, y veremos un sinfín de huecos y discontinuidades en lo que pensábamos como una superficie uniforme. La figura 1 nos da una idea del aspecto microscópico de una superficie recién formada en un cristal de sulfuro de cadmio. La fotografía se obtuvo con un microscopio óptico de poco aumento. Con 200 aumentos se obtiene una imagen como la de la figura 2. Se pueden observar múltiples terrazas por todos lados. La situación dista mucho de ser ordenada.

Figura 1. Aspecto de una superficie recién formada al observarla con poca resolución en un microscopio óptico. La línea de bolitas que se observa en el centro mide unos 0.15 mm, más o menos la distancia de surco a surco de un disco long play. (Cortesía de G. Somorjai y M. Van Hove).


Figura 2. Fotografía de una superficie de un cristal de sulfuro de cadmio. El hexágono de la esquina superior izquierda mide aproximadamente 0.4 mm, la dimensión de un granito de sal de mesa. Se usó un microscopio óptico de 200 aumentos para obtener esta fotografía. (cortesía de G. Somorjai y M. Van hove).

Los metales ofrecen una historia más accidentada aún. En el caso de una superficie metálica convertida en espejo a fuerza de pulir, encontraremos terrazas, escalones, agujeros y átomos de sustancias ajenas al metal que se "amarran" a la superficie. Observando por suficiente tiempo una superficie en contacto con gases, la atmósfera por ejemplo, veremos que todo cambia: más y más átomos extraños se pegarán a los de la superficie; ahí mismo se formarán moléculas de sustancias nuevas; algunas se irán llevándose átomos del metal; tal vez algunos átomos extraños no se conformarán con estar en la superficie sino que penetrarán el metal poco a poco; se producirán resquebrajamientos; el aspecto cambiará, aun macroscópicamente; en algunos casos aparecerán pequeños poros producidos por el ataque químico de las sustancias extrañas al metal; etc. La única manera de reducir todo esto es aislando la pieza metálica de los gases de la atmósfera: producirla al vacío, mantenerla al vacío, blindarla para que ni la radiación la toque. Aún entonces la superficie estará poblada de imperfecciones: el lugar de todos los puntos que separan al cuerpo del resto del Universo tiene una forma complicada. No, no sólo complicada, sino muy, muy complicada. Llamemos interfaz a ese lugar.

Esta interfaz es la cara del cuerpo (que de aquí en adelante consideraremos sólido) que da al exterior. Sin embargo, es necesario penetrar mucho en el sólido antes de que pueda observarse el paisaje que se ve en el bulto. Una característica de este último es que de cualquier punto se ve el mismo entorno (esta región de características uniformes es lo que llamamos una fase). Obviamente, en la vecindad de la superficie tenemos una dirección que rompe completamente el esquema, ya que ahí, muy cerca, se encuentra el "mundo exterior". Tenemos que viajar hacia adentro y cruzar una región más o menos amplia, dependiendo del sistema de que se trate, antes de llegar a observar un entorno de "bulto". Podemos llamar interfase a esta región que, a diferencia de la interfaz, tiene un espesor dado por la distancia que penetramos en el sólido hasta obtener un entorno de bulto. Algo así como cuando penetramos en un bosque: hay que caminar cierta distancia antes de sentir, al observar en todas direcciones, que todo es bosque.

La interfase comprende toda la región de cambio paulatino desde el medio exterior al sólido hasta llegar al bulto, ya que antes de cruzar la interfaz en dirección al bulto también hemos encontrado cambios: el medio exterior siente la presencia del sólido y las moléculas de aquél se sienten atraídas o repelidas por éste.

Hemos tratado de precisar algunos de los términos a los que nos referiremos en las próximas páginas. Sin embargo, cabe una aclaración. Pudiera pensarse que entre los científicos que estudian las superficies hay una gran precisión en los términos; que cuando dicen las palabras superficie, interfaz, interfase..., brotan en todas las mentes los mismos conceptos. Pero no, lo que cada uno de ellos denota con esos términos depende en gran parte del tipo de técnica que utilice para estudiar la región de interés. Para sortear el problema de las definiciones se tienen las tautologías. En una excelente revisión de los problemas de superficies puede uno encontrar el siguiente enunciado: Superficie es lo que se estudia con técnicas de superficies. Como las técnicas de superficie varían notablemente —desde el microscopio de tunelamiento hasta técnicas experimentales (SIMS) que analizan la superficie al ir quitando las camadas atómicas una a una—, tendremos también una gran cantidad de superficies.

Sin entrar demasiado en detalles, los sólidos pueden dividirse principalmente en materiales amorfos y cristalinos. Estos últimos tienen como característica distintiva que se pueden describir por la repetición de una figura. Los cristales ideales tienen solamente bulto y, si se piensa un poco, se llega a la conclusión de que deben ser infinitos. Por ejemplo, un cubo con un átomo en cada uno de sus ocho vértices nos producirá, al repetirlo en todas direcciones (sin rotarlo) un cristal del que se dice que tiene simetría cúbica. El número de esas figuras que por repetición generarán cristales ideales es finito: hay catorce tipos de mallas en tres dimensiones. En los nodos de esos andamiajes infinitos construidos por repetición de una de esas figuras se acomodan los átomos de diversas especies químicas. Dependiendo de la figura básica, del número de especies químicas y sus concentraciones, pueden tenerse varios estados ordenados. Entonces aparece la superficie: variadas técnicas han mostrado que el orden del material puede verse seriamente perturbado por esa presencia ¿O acaso sería mejor decir: por el comienzo de una ausencia?

En una ocasión escuchamos una vívida descripción de las emociones que encendieron el entusiasmo de un amigo, del altiplano potosino como nosotros, en su primer acercamiento al mar. Imposible describir sin traicionar —por infidelidad— las emociones que poblaban el relato.

En el recuerdo queda la expectativa que despertó el paulatino cambio de clima, de vegetación, de sensaciones: la humedad, los olores, la transpiración en ese medio húmedo; hasta que, de pronto, tras una curva: el mar, ocupando las lejanías, rascando el espacio con su peculiar sonido... Cambios paulatinos que se producen desde nuestro semidesierto, pasando por una verde Huasteca, hasta llegar a la arena compactada por el azote continuo del oleaje y, después continuar, más allá de donde empieza el mar pero ocultos bajo las aguas. Un electrón que viaja en un cristal, dirigiéndose a la superficie, empezará a percibir cambios paulatinos desde puntos bastante alejados de ella. Sucede que los átomos de la superficie se reacomodan, la distancia entre camadas de átomos cambia: a veces aumenta, a veces disminuye. Si el material consta de varias especies químicas, algunas de ellas son arrastradas a la superficie de tal modo que el electrón verá cambios en las concentraciones de las diversas sustancias químicas. Y los cambios seguirán hasta que termina el sólido. Otros cambios pueden continuar pero ya en otra región: un vapor, un líquido, otro sólido, o mezclas de ellos.

Pero, ¿desde dónde empezó a sentir el electrón que las cosas ya no eran las mismas que allá en lo profundo del material, en lo que llamamos bulto? Como dependiendo de la propiedad que se quiere estudiar, las técnicas empleadas varían, se tiene que las respuestas son múltiples. Algunas técnicas ven casi exclusivamente la primera camada, otras menos de diez capas y algunas varias decenas de planos atómicos. Así, la técnica escogida para estudiar una propiedad característica de la superficie debe tomar en cuenta en cuántas camadas la propiedad toma los valores del bulto.

InicioAnteriorPrevioSiguiente