CONCLUSIONES
H
EMOS
revisado, en forma breve, el fenómeno físico del movimiento browniano. A lo largo de nuestra reseña se ha visto que históricamente no se trató de dar sólo la explicación de un fenómeno muy interesante. El movimiento browniano ha sido fuente de luz sobre otro tipo de fenómenos que ocurren en la naturaleza.En primer lugar, concurrentemente con la explicación de sus causas, dio lugar a resolver de una vez por todas la disputa que existía, en los medios científicos de fines del siglo pasado, acerca de la estructura de la materia.
Asimismo, por tratarse inherentemente de un proceso irreversible, proporcionó uno de los primeros casos cuya evolución se pudo estudiar con todo detalle. Es importante mencionar que, para poder realizar este programa, fue necesario establecer las herramientas matemáticas adecuadas. Dado que para la descripción del fenómeno era indispensable tratar con cantidades estocásticas, se tuvo que desarrollar la teoría matemática de las funciones no-diferenciables.
Una vez entendido el movimiento browniano a nivel fenomenológico se inició la investigación acerca de su fundamentación microscópica. En vista de que en este caso se tienen condiciones favorables en las que una partícula es mucho más pesada que cada uno de los átomos que componen el fluido en que se mueve, se ha podido avanzar considerablemente en la teoría microscópica correspondiente. Este desarrollo ayudó a dilucidar, entre otras, una cuestión tan fundamental como la transición de una descripción reversible, como lo es la microscópica, a una descripción irreversible, como lo es la macroscópica. Al aclararse satisfactoriamente las paradojas propuestas por Loschmidt y Zermelo, se afianzaron las bases conceptuales de la edificación así lograda. Asimismo, se encontraron las causas fundamentales de la aparición de la estocasticidad.
Sin embargo, el estudio microscópico del movimiento browniano proporcionó otra posibilidad, a saber, estudiar el fenómeno a muy bajas temperaturas. En este caso, es necesario utilizar la mecánica cuántica para la descripción y como consecuencia se encuentran otros tipos de comportamiento que no hubiera sido posible hallar fenomenológicamente. Por ejemplo, se descubrió la persistencia de las fluctuaciones, que es un fenómeno que apenas se está estudiando hoy día y sobre el cual aún hay mucho que aprender.
Otras facetas del movimiento browniano se encuentran en diversas situaciones físicas que tienen gran importancia, no sólo conceptual, sino de aplicación práctica como son los coloides. Una parte importante de muchos procesos industriales se basa en las propiedades de sustancias coloidales.
Asimismo, se han aplicado las ideas y métodos generados en las investigaciones sobre movimiento browniano al estudio de otros fenómenos, que son físicamente distintos, pero que tienen características muy parecidas. Uno de estos sistemas es el láser, cuya importancia no se puede subestimar. A pesar de que obviamente un láser y una partícula browniana a baja temperatura son sistemas físicos distintos, resulta que tienen propiedades estadísticas análogas y, por tanto, las técnicas de análisis desarrolladas para el segundo sistema se pueden aplicar al primero.
En la parte final del libro hemos presentado un nuevo horizonte que en los últimos años ha emergido del estudio del movimiento browniano, a saber, el fascinante tema de los fractales. Resulta que en la naturaleza hay una cantidad apreciable de fenómenos que tienen carácter fractal. Cada día, investigadores de todo el mundo presentan nuevas contribuciones a lo largo de estas líneas de pensamiento. No es exagerado decir que este tema apenas está en su infancia.
Hemos ilustrado, pues, un hecho muy importante en el desarrollo de la ciencia: la forma en que un fenómeno, el movimiento browniano (cuya explicación era importante hallar) abrió y sigue abriendo de manera explosiva una serie de campos y nuevos horizontes, tanto científicos como de aplicación práctica.
![]()
![]()