VII. ALGUNAS CONSIDERACIONES SOBRE LA NATURALEZA DE LA LUZ
D
ESDE
la antigñedad, los hombres se preguntaron qué es la luz. Esta cuestión dio lugar, con el transcurso del tiempo, a la formulación de una serie de problemas muy sutiles.Galileo Galilei (1564-1642) ya se había dado cuenta de que la luz se propaga en línea recta y además, de que si su velocidad es finita debería ser muy grande. En 1675 el danés Olaf Roemer, al observar los eclipses de las lunas del planeta Júpiter hizo la primera medición de la velocidad de la luz. En esa época también se conocían otros fenómenos que experimentaba la luz: la reflexión y la refracción.
La reflexión ocurre cuando un rayo de luz llega a una superficie que está pulida y se regresa. Si i es el ángulo con que incide el rayo sobre la superficie, como se muestra en la figura 6, entonces resulta que el rayo reflejado forma un ángulo r de reflexión igual al incidente i. Este resultado se llama la ley de la reflexión. Un ejemplo bien conocido de la reflexión es el que se da en un espejo.
Figura 6. Una propiedad que tiene la luz es la de reflejarse al incidir sobre una superficie pulida.
Un rayo de luz experimenta refracción al pasar de un medio a otro. Por ejemplo, un rayo de luz, al encontrar una superficie de agua, transmite parte de él al agua. Sin embargo, el rayo dentro del agua cambia la dirección de su propagación. Este fenómeno constituye la refracción. Esto significa que los ángulos de incidencia i, y de refracción j (figura 7) no son iguales. La relación entre estos ángulos depende de las características de las dos sustancias en que se propagan los rayos. La ley de Snell explica el comportamiento del rayo transmitido, en términos del rayo incidente y de propiedades de los medios.
Figura 7. Una propiedad que tiene la luz al pasar de un medio a otro es la de cambiar su dirección de propagación.
En el siglo XVII los principales fenómenos conocidos de la luz eran la reflexión y la refracción. Newton propuso un modelo para explicar el comportamiento de la luz. Supuso que la luz estaba compuesta de corpúsculos minúsculos que se movían con cierta velocidad. Así pudo explicar la reflexión, simplemente como un rebote de las pequeñísimas partículas al chocar con una superficie que separa a dos medios. Además, usando la hipótesis corpuscular de la luz, pudo dar argumentos que explicaban por qué la luz cambia su dirección, haciendo ver que al pasar los corpúsculos de un medio a otro alteran su velocidad.
Una propiedad muy importante de la luz es el color. Newton encontró que la luz blanca estaba compuesta de varios colores. Hizo un sencillo experimento con un prisma (figura 8) en el que la luz blanca, por ejemplo la del Sol, se hacía pasar a través de un prisma. Encontró que la luz que emergía del otro lado del prisma estaba compuesta de rayos que tenían los colores del arco iris, es decir, todos los colores visibles. Así encontró que cada color se refracta de manera distinta a la de otro color.
Figura 8. Por medio de un prisma se puede demostrar que la luz blanca está compuesta por todos los colores visibles.
Otro fenómeno que estudió Newton fue el siguiente. Cuando un haz de luz blanca incide sobre una burbuja de jabón resulta que se forman regiones oscuras intercaladas con regiones iluminadas. Esto mismo ocurre cuando un haz incide sobre un vidrio esférico que se coloca sobre una placa plana de vidrio dejando una capa de aire muy delgada entre ellos (figura 9). Se forma un patrón de luz como el mostrado en la figura 10. Newton hizo mediciones muy precisas en las que relacionó los anchos de las regiones tanto iluminadas como oscuras con la curvatura del vidrio. Encontró que para cada color se tenía una región iluminada con un ancho distinto. Newton llegó a la conclusión de que, hablando en terminología moderna, había algo periódico en el comportamiento de la luz.
Figura 9. Arreglo para obtener anillos de Newton.
Hubo otro fenómeno luminoso que Newton llegó a conocer, la llamada difracción de la luz, descubierta en 1665 por el italiano F. M. Grimaldi. Éste hizo una pequeñísima perforación en la persiana de su ventana, que daba al Sol. En la trayectoria de la luz que pasó colocó un pequeño objeto y observó la sombra que proyectaba (figura 11). Encontró que el extremo de la sombra no era nítido sino difuso, y que además se formaban bandas de color en que regiones iluminadas se alternaban con regiones oscuras (figura 12). De otras observaciones que hizo Grimaldi llegó a la conclusión de que la luz "se voltea" alrededor de los bordes de obstáculos opacos iluminados por una fuente muy pequeña de luz.
Figura 11. Esquema de un arreglo para estudiar la sombra que forma un objeto.
Figura 12. Patrón de difracción que se forma por una orilla recta. Las flechas indican el extremo de la sombra geométrica.
La difracción fue otro fenómeno que reforzó la idea newtoniana de que había algo periódico en el comportamiento de la luz. Sin embargo, estas periodicidades no le hicieron cambiar su opinión de que la luz estaba compuesta de corpúsculos, pues creyó que las periodicidades eran efectos secundarios causados por los distintos medios con los que la luz entra en contacto, más que una propiedad intrínseca de la luz.
El prestigio inmenso que gozó Newton hizo que el modelo corpuscular de la luz fuera el que los científicos de todo el siglo XVIII aceptaran.
A principios del siglo XIX el físico inglés Thomas Young (1773-1829) inició un trabajo de análisis y experimentación muy amplio con los rayos de luz. Llegó a la conclusión de que todos los fenómenos conocidos se podían explicar suponiendo que la luz estaba formada de ondas. Pudo explicar que los anillos de Newton se formaban por la interferencia de ondas. Así, explicó que la banda oscura se debía a que en ese lugar dos ondas se componían destructivamente: una onda tenía un signo y otra tenía el signo inverso (figura 13), mientras que en otro lugar ocurría que las dos ondas tenían los mismos signos, o sea se componían constructivamente y daban lugar a una zona muy iluminada (figura 14). Comprobó sus ideas haciendo diversos experimentos. Uno de los más notables fue el de la interferencia con dos rendijas. Este consiste en hacer incidir un haz de luz sobre una pantalla opaca (figura 15) con una rendija. La luz que pasa por esta rendija se hace incidir sobre otra pantalla que tiene dos rendijas. En una tercera pantalla se forma un patrón como el mostrado en la figura 16. Éste consiste en bandas iluminadas alternándose con bandas oscuras. La explicación dada con respecto a las figuras 13 y 14 es la que se aplica a este patrón observado.
Figura 13. Dos ondas fuera de fase interfieren destructivamente, creando zonas oscuras.
Figura 14. Dos ondas de fase interfieren constructivamente, creando zonas iluminadas.
Figura 15. Arreglo experimental diseñado por Young para estudiar la interferencia de la luz que pasa por las dos rendijas e incide sobre la pantalla.
Figura 16. Patrón de interferencia obtenido por Young usando el arreglo de la figura 15.
Sin embargo, Young no pudo explicar satisfactoriamente el fenómeno de difracción con base en la hipótesis ondulatoria.
Las ideas de Young fueron muy atacadas y no se les hizo caso durante más de una década. Fueron retomadas en Francia por Augustin Fresnel (1788-1827), quien mejoró la concepción ondulatoria de la luz y pudo explicar el fenómeno de la difracción.
En Francia se generó una controversia muy viva sobre esta hipótesis. El famoso científico S. D. Poisson, con su gran dominio de las matemáticas, hizo diversos cálculos basados en la teoría ondulatoria y concluyó que la teoría de Fresnel tenía una consecuencia que le pareció absurda. Poisson calculó que, en ciertas circunstancias bien determinadas, una consecuencia de la teoría ondulatoria era que en el centro de la sombra de un disco opaco circular debía haber ñuna zona iluminada! (figura 17). Esto no era posible ya que iba contra el sentido común. Preocupado, Fresnel realizó un experimento en las mismas condiciones de los cálculos de Poisson y observó que ñefectivamente en el centro de la sombra se formaba una región iluminada! Esto se muestra en la figura 18.
Figura 17. Poisson hizo ver que, según la teoría ondulatoria de la luz, debe haber una zona iluminada en el centro de la sombra de un disco opaco.
Figura 18. Resultado del experimento de Fresnel. En el centro de la sombras sí hay una región iluminada. Nótese en esta fotografía otras dos cosas: también hay una zona iluminada en el centro de la sombra del alambre que sostiene al disco. Se percibe, además, el patrón de difracción en los bordes de la sombra.
Este resultado causó sensación y tuvo como consecuencia que los principales científicos aceptaran la hipótesis ondulatoria de la luz. Posteriormente se encontraron otro tipo de fenómenos, como la polarización y la dispersión, que solamente se pudieron explicar con base en esta hipótesis. Hacia los años de 1830, la hipótesis de Newton sobre la naturaleza corpuscular de la luz ya había sido prácticamente abandonada en favor de la ondulatoria.
Fue mucho tiempo más adelante, en 1873, que el gran físico británico, James Clerk Maxwell publicó sus investigaciones sobre electricidad y magnetismo en donde presentó una gran síntesis de resultados experimentales obtenidos con anterioridad por científicos como H. C. Oersted, A. M. Ampere, M. Faraday, etcétera. Como consecuencia de su trabajo, Maxwell predijo que en la naturaleza deberían existir ondas electromagnéticas. Además, hizo ver que la luz es una onda electromagnética. De esta manera descubrió que la luz tenía origen electromagnético.
Fue años después, en 1886, cuando Maxwell ya había muerto, que Heinrich Hertz demostró en el laboratorio la existencia real de las ondas electromagnéticas, confirmando brillantemente la teoría electromagnética de la luz. Son justamente estas ondas las que se utilizan para las transmisiones de radio y televisión.
Una característica de las ondas es su frecuencia. Resulta que dentro de cierto intervalo de frecuencias, el ojo humano es sensible a las ondas electromagnéticas y las registra como luz visible. Fuera de este intervalo el ojo humano no las registra y éstas nos parecen invisibles. Las ondas ultravioleta e infrarrojas, por ejemplo, son ondas electromagnéticas que no podemos ver.
La teoría de Maxwell, que visualizaba a la luz como onda electromagnética continua, tuvo muchos éxitos al explicar un buen número de fenómenos a escala macroscópica. Sin embargo, hubo fenómenos que quedaron fuera de su alcance. En general, aquellos en que la radiación interaccionaba con la materia a escala microscópica. Mencionamos como ejemplos el fenómeno de la fluorescencia y el efecto fotoeléctrico.
Se ha observado que al hacer incidir radiación sobre ciertas sustancias, éstas transforman la luz emitiendo luz que tiene una frecuencia distinta a la incidente. Invariablemente, la luz emitida tiene una frecuencia menor. Así, hacia los años de 1850 el científico inglés George Stokes demostró que al hacer incidir luz azulosa sobre un trozo de mineral de fluorspar, se absorbía e instantáneamente emitía luz de otro color, que es amarillo.1 Este fenómeno no se pudo explicar por medio de la teoría de Maxwell.
Otro fenómeno que tampoco se podía explicar fue el siguiente. Al hacer incidir radiación sobre ciertos metales, se observa que éstos despiden electrones (figura 19). Éste es el efecto fotoeléctrico. El primer informe sobre este fenómeno lo hizo E. Becquerel en 1893. Al iluminar una placa de una pareja metálica que se encontraba en una solución, se dio cuenta de que se modificaba el voltaje entre ellas. Posteriormente Hertz y W. Hallwachs encontraron que una placa metálica con carga eléctrica negativa podía perder su carga al ser iluminada con radiación ultravioleta. Fue Philipp Lenard quien, en 1902, demostró que estos fenómenos se debían a la expulsión de electrones del metal bajo el estímulo de la radiación. Resulta que los metales eran más sensibles bajo la acción de la radiación ultravioleta que bajo la acción de luz visible.2
Figura 19. Al incidir radiación electromagnética sobre la superficie de un metal se expulsan electrones. Este es el efecto fotoeléctrico.
En particular, se encontró que por muy alta que fuera la intensidad de la radiación, si la frecuencia de la onda incidente es suficientemente pequeña no se despiden electrones. No hay emisión a menos que la frecuencia de la radiación tenga un valor mayor a un valor bien determinado, llamado frecuencia umbral. El valor de la frecuencia umbral es distinto para metales diferentes.
Este resultado es muy extraño, ya que si se toma en cuenta que en la teoría de Maxwell la intensidad está relacionada con la energía de la onda, de manera que a mayor intensidad mayor es la energía, entonces uno esperaría que mientras más energética fuera la onda que incide sobre el metal, más electrones saldrían. Sin embargo esto no es cierto.
Asimismo, también se observa que si la frecuencia de la onda incidente es suficientemente alta, entonces se despiden electrones aunque su intensidad sea muy baja. En particular, resulta que la máxima energía que logran tener los electrones no depende de la intensidad de la onda, sino de su frecuencia. Este resultado tampoco se puede entender claramente.
La teoría de Maxwell no pudo explicar el efecto fotoeléctrico.
Al igual que en el caso de la termodinámica y de la teoría cinética, vemos que en la teoría electromagnética también existieron algunos problemas que no se pudieron aclarar. Sin embargo, dados los espectaculares éxitos de la teoría de Maxwell, estas discrepancias no molestaron a los científicos de finales del siglo pasado. Al principio del siglo XX se consideró la teoría electromagnética de Maxwell al mismo nivel que la mecánica de Newton entre las leyes fundamentales de la física.
NOTAS
1 La frecuencia del color azul es mayor que la del amarillo.
2 La radiación ultravioleta tiene frecuencias mayores que la luz visible.
![]()