XI. REPERCUSIONES EN EL DESARROLLO CONCEPTUAL DE LA TEORÍA CUÁNTICA
E
L TRABAJO
de Einstein de 1907 sobre los calores específicos a bajas temperaturas tuvo muchas consecuencias importantes para el desarrollo posterior de la física. Solamente hablaremos de algunas de ellas. En primer lugar, extendió la aplicación de la teoría cuántica a sistemas para los cuales no había sido construida, es decir a sistemas materiales y no radiactivos, dando explicaciones a resultados experimentales que no eran consistentes con las teorías existentes. Este trabajo tuvo como consecuencia un impulso importante en el estudio de la física del estado sólido, pues a bajas temperaturas, casi todas las sustancias están en dicho estado termodinámico. Además, este trabajo fue el que abrió una nueva rama de la física, que después recibiría el nombre de mecánica estadística cuántica. Este campo estudia, a partir de una base microscópica, las propiedades termodinámicas de las sustancias a bajas temperaturas.Sin embargo, éstas no fueron las únicas consecuencias del trabajo de Einstein. Hubo otra consecuencia, que a largo plazo fue de importancia decisiva. Como ya se ha dicho anteriormente la comunidad científica de esos años no creía en la realidad física de la teoría de Planck. Por ejemplo, un científico de mucho renombre en esa época, Walther Nernst, no aceptó inicialmente la teoría cuántica diciendo que "no era más que una fórmula de interpolación". Con esto se refería al trabajo empírico de Planck de 1900. Posteriormente, cuando le llamó la atención la determinación de los calores específicos a bajas temperaturas, en relación con su descubrimiento de la tercera ley de la termodinámica, y al empezar a vislumbrar que justamente esta ley tenía origen cuántico, y cuando sus propios experimentos y los de sus colaboradores como Eucken concordaron con las predicciones de Einstein, cambió de parecer y se refirió a la teoría de Planck como "una teoría ingeniosa y fructífera". Al igual que Nernst, muchos científicos empezaron, poco a poco, a darse cuenta de que había "algo" real en las ideas de la cuantización.
Nernst pensó que se debería organizar un congreso internacional de científicos prominentes con el fin de discutir los problemas básicos de las ideas cuánticas propuestas por Planck y desarrolladas por Einstein. En un trabajo presentado en enero de 1911 ante la Academia de Ciencias de Berlín, Nernst declaró: "En la actualidad, la teoría cuántica es esencialmente una regla para hacer cálculos, de naturaleza muy extraña, se podría decir grotesca; pero ha resultado ser tan fructífera, debido al trabajo de Planck, en lo que a la radiación concierne, y por el trabajo de Einstein, en lo que a la mecánica molecular concierne [...], que es el deber de la ciencia tomarla en serio y sujetarla a investigaciones cuidadosas."
Nernst logró que el industrial belga Ernest Solvay patrocinara un congreso, que fue el primero de los famosos Congresos Solvay que se han efectuado desde 1911 en Bruselas, Bélgica. Este congreso resultó muy importante en la historia de la física, asistieron gentes notables como A. H. Lorentz, J. Jeans, H. Kamerlingh Onnes, E. Rutherford, W. Wien, L. Brillouin y A. Sommerfeld, así como, naturalmente, Nernst, Planck y Einstein. Y en su transcurso fue donde se renunció explícitamente a la validez universal de la física desarrollada hasta fines del siglo XIX. Esta cuestión fue de fundamental importancia. Aquí vale la pena mencionar que el edificio conceptual que se tenía a fines del siglo pasado estaba, en esencia, sostenido por la mecánica desarrollada por Newton y la teoría electromagnética, desarrollada por Maxwell.
Hemos de mencionar que Einstein, en 1905, ya había demostrado al proponer la teoría de la relatividad especial, que la mecánica de Newton no tenía validez universal; demostró que si los cuerpos se mueven con velocidades comparables a la de la luz, entonces la mecánica de Newton no puede describir los fenómenos correspondientes. La teoría de la relatividad es una generalización de la teoría newtoniana, que amplía su dominio de aplicación. Si en la teoría de la relatividad se consideran fenómenos en los cuales la velocidad de los cuerpos es mucho menor que la de la luz, como son la mayoría de los fenómenos cotidianos, entonces se recupera la mecánica de Newton. Es decir, la teoría newtoniana es un caso particular de la relativista, para velocidades muy pequeñas. Desde este punto de vista Einstein ya había señalado antes una limitación de la física entonces existente.
Con las ideas cuánticas, se señaló otra limitación de naturaleza distinta. Al estudiar fenómenos en los que se ven involucrados entes atómicos, como por ejemplo, la interacción de la radiación con la materia, o sea con los átomos o las consecuencias de los movimientos microscópicos de los átomos que componen una sustancia en las propiedades macroscópicas, entonces la física de Newton y de Maxwell deja de describir la realidad física. Se expresó esta limitación por primera vez en el Congreso Solvay de 1911. Así, la física que se conocía entonces, la de Newton y la de Maxwell, resultó ser válida solamente en la descripción de fenómenos macroscópicos. Para los microscópicos fue necesario recurrir a las ideas de la cuantización. Se empezó entonces a llamar a la física conocida a finales del siglo XIX, la mecánica de Newton y el electromagnetismo de Maxwell, física clásica.
Se puede decir entonces que la física clásica coincide con la nueva física cuántica para el caso en que se traten fenómenos macroscópicos.
Destacaremos el hecho de que fue Einstein quien, con sus trabajos en relatividad y en teoría cuántica, hizo ver la limitación que tenía la física clásica. Conceptualmente, este hecho fue devastador entre muchos científicos de la época. Hacia fines del siglo pasado, a pesar de las inconsistencias que ya hemos mencionado, se creía que se había edificado la teoría física definitiva de la naturaleza. Se pensaba que estas inconsistencias eran detalles que poco a poco se iban a resolver dentro del marco de las ideas establecidas. Es interesante mencionar, como ejemplo de la actitud que tenía mucha gente al respecto, dos declaraciones hechas a fines del siglo pasado. En 1894 el físico norteamericano Albert Michelson declaró: "Un eminente físico ha señalado que las verdades futuras de la ciencia física se deberán buscar en la sexta cifra decimal." El eminente físico al que se refería Michelson era lord Kelvin, quien había dicho lo anterior en 1884. El otro caso corresponde a un comentario público hecho por Maxwell, en 1871, en su discurso introductorio sobre física experimental en la Universidad de Cambridge, Inglaterra: "La característica de los experimentos modernos de que consisten principalmente de mediciones es tan prominente, que la opinión parece haberse extendido, que en unos cuantos años todas las constantes físicas habrán sido estimadas aproximadamente, y que la única ocupación que quedará a los hombres de ciencia será llevar a cabo estas mediciones hasta otra cifra decimal."
El primer Congreso Solvay tuvo importantes repercusiones indirectas en el desarrollo posterior de la física cuántica. Es digno de mencionar la influencia que tuvo sobre el danés Niels Bohr y sobre el francés Louis de Broglie. Ninguno de estos dos jóvenes científicos en 1911 asistió al Congreso, mas Bohr obtuvo una descripción por boca de Rutherford cuando lo vio en Manchester, Inglaterra, a poco del regreso de este último de Bruselas y quedó vivamente impresionado. Esto estimuló a Bohr para realizar su famoso trabajo, publicado en 1913, sobre la estructura del átomo de hidrógeno, en el que usó conceptos cuánticos. Así pudo demostrar que los espectros de rayas que se conocían experimentalmente, pero que no se habían podido explicar, tenían origen cuántico. Bohr recibió el premio Nobel de Física en 1922.
Maurice de Broglie fue uno de los secretarios científicos del Congreso y en tal calidad editó las discusiones para su publicación. De regreso a Francia, su hermano Louis tuvo oportunidad de estudiarlas y se entusiasmó tanto con lo que leía que "decidió dedicar todos sus esfuerzos a investigar la naturaleza real de los cuantos misteriosos que Planck había introducido en la física teórica diez años antes". Este esfuerzo culminó con la publicación de su tesis doctoral en 1924, presentada a la Universidad de París, en la que abrió una nueva dimensión sobre los problemas cuánticos, como veremos en el próximo capítulo. Esta contribución le valió el premio Nobel de Física en 1929.
La obra de Albert Einstein no fue solamente la primera aplicación de las ideas cuánticas a los fenómenos de radiación electromagnética y a los sistemas materiales, con su respectiva confirmación experimental; también desencadenó una serie de actividades que lograron convencer a prominentes científicos de la bondad de las ideas cuánticas y a estimular a los jóvenes físicos a desarrollar lo que culminó con lo que ahora conocemos como la física cuántica.
El primer Congreso Solvay se puede considerar como el primer acto en el desarrollo conceptual de la teoría cuántica. En él, Einstein demostró su grandeza al tratar de manera muy simple fenómenos específicos que le ayudaron a penetrar en los secretos de la naturaleza. Ésta fue una de sus características geniales.
La teoría cuántica tuvo otras dos fases en su desarrollo. Una que va, aproximadamente, de 1913 a 1924 y la otra de 1924 a 1926, en la que se estableció la teoría definitiva. De manera breve reseñaremos algunos de sus aspectos más prominentes, en los que Einstein, nuevamente, desempeñó un papel importante.
![]()