V. MÁS ALLÁ DE LOS COLORES

1. LUCES QUE NO VEMOS

EN EL capítulo anterior aprendimos que la luz está hecha de ondas de radiación electromagnética, y que a cada color de la luz corresponde una determinada longitud de onda. También vimos que hay otros tipos de radiación electromagnética que no suelen llamarse luz, y que poseen longitudes de onda diferentes. Cabe entonces preguntarnos: ¿qué es lo que distingue a la luz de aquellas otras ondas?, ¿dónde está la frontera entre unas y otras?

Si usted ha tenido oportunidad de tomar fotografías con diferentes tipos de película, probablemente se haya dado cuenta de que en algunas fotos se ven más claros ciertos objetos que en otras. Con película ordinaria, ciertos tonos rojos se pierden y en cambio aparecen más evidentes los violetas. En realidad, esta película es sensible a la radiación que está más allá del violeta —la ultravioleta— y que nuestros ojos no perciben. A esta radiación ya no la llamamos luz, porque no la detectamos a simple vista. Sin embargo, lo único que la distingue de la radiación visible es su longitud de onda, que es un poco menor (véase la Figura 43).


 

Figura 43. La misma flor fotografiada con luz normal en (a) y con luz ultravioleta en (b).

Por otra parte, si utiliza película sensible al rojo, captará una radiación que es invisible para nosotros por tener longitud de onda demasiado grande: la radiación infrarroja. Los ojos de algunos animales son sensibles a otras longitudes de onda, y entonces ven luces que nosotros no vemos, pero en cambio son ciegos a ciertos colores que nosotros sí podemos ver.

Toda esta radiación electromagnética de la que hemos venido hablando es producida por electrones en movimiento: partículas cargadas que al ser puestas a vibrar pierden una parte de su energía en forma de radiación. Por ejemplo, en una antena de radio los electrones son forzados a oscilar rápidamente de un lado a otro, y la frecuencia de las ondas emitidas está determinada por la frecuencia de estas oscilaciones. La luz visible es producida normalmente por cambios en el movimiento de los electrones en los átomos o las moléculas. Los rayos g, por su parte, se producen con electrones muy veloces. En cambio, los rayos y suelen producirse durante transformaciones nucleares en las que se liberan grandes cantidades de energía.

En la figura 44 se presenta la lista de estos tipos de radiación, con una indicación de las longitudes de onda que les corresponden; esto es lo que suele llamarse espectro electromagnético. Observe que puede existir radiación de cualquier longitud de onda, desde las ondas de radio hasta los rayos g; más allá de éstos no se han detectado ondas de radiación.



Figura 44. El espectro electromagnético. Los nombres de las secciones o bandas del espectro son esencialmente históricos, y puede verse que hay traslape entre algunas de estas secciones.

En la misma figura se han anotado las frecuencias de las ondas, porque en ocasiones suele especificarse este dato en vez de la longitud de onda. Por ejemplo, cuando se habla de ondas de radio de 860 kilohertz en la banda de amplitud modulada (Radio UNAM, AM), se quiere decir que estas ondas poseen una frecuencia de 860 000 ciclos por segundo. A esta frecuencia corresponde una longitud de onda de 350 m aproximadamente. Se ve claro de la tabla que a mayor longitud de onda corresponde una menor frecuencia y viceversa —como sucede con todos los fenómenos ondulatorios. Así, por ejemplo, la luz visible tiene una frecuencia mayor que las ondas de radio, y la frecuencia de los rayos X es aún mayor. Recordemos de la sección IV.1 que la relación entre frecuencia y longitud de onda es v = c/ l, con c = 300 000 km/seg aproximadamente.

Recordando también la fórmula de Planck enunciada en el capítulo anterior, E = hv vemos que la radiación más energética es la que posee una mayor frecuencia, o sea una menor longitud de onda. Por eso los efectos de las diferentes radiaciones pueden ser muy diversos, así como también sus aplicaciones. Veamos algunos ejemplos.

Ondas de radio. Recordemos que Hertz usó un simple oscilador eléctrico para generar las ondas que ahora llevan su nombre, y pudo captar éstas con un receptor de radio muy primitivo. Rápidamente sus experimentos cobraron importancia, y ya a comienzos del nuevo siglo se habían establecido las comunicaciones de radio a través del Océano Atlántico. El radio, el radar y la televisión de hoy día son elaboraciones y modificaciones de la idea original: su transmisión y recepción dependen de circuitos oscilatorios en esencia similares a los que usó Hertz.

Las ondas de radio tienen frecuencias que van desde104 hasta 1010 hertz. Las de menor frecuencia tienen una longitud de onda de 30 kilómetros, y por ello se difractan alrededor de cualquier obstáculo; pero conforme aumenta la frecuencia, la propagación de estas ondas se vuelve más direccional; se hacen más evidentes los fenómenos de reflexión y refracción. Las estaciones de radio en AM (amplitud modulada) utilizan frecuencias bajas; las bandas de frecuencias más altas están ocupadas por los radioaficionados, la policía, la aviación, la frecuencia modulada, la televisión, la radio de onda corta y el radar.

En el extremo de las radiofrecuencias altas se encuentran las microondas, que son generadas por corrientes oscilatorias en tubos de vacío. Sus frecuencias varían entre l09 y 1012 hertz. Las microondas también son usadas para las telecomunicaciones, sobre todo a través de satélites; las de mayor frecuencia se emplean más bien para producir calor con la ayuda de hornos especiales.

Las ondas infrarrojas constituyen lo que se llama radiación térmica. Son las ondas radiadas por los electrones menos amarrados en los átomos y las moléculas, y sus frecuencias van de 1011 a más de 1014 hertz. En el extremo de las frecuencias altas se habla ya de luz infrarroja: luz que puede ser detectada por películas especiales, aunque nosotros sólo percibimos sus efectos térmicos.

En seguida viene la luz visible, que cubre una banda muy estrecha del espectro, alrededor de los 1014 ciclos. Su longitud de onda es tan pequeña que suele usarse por comodidad una unidad muy pequeña para medirla: el angström (Å), que equivale a 0.00000001 cm. Así, por ejemplo, el extremo rojo tiene una longitud de onda de 7 500 Å a la luz amarilla corresponde aproximadamente una longitud de 5 500 Åy el extremo violeta es de poco menos que 4 000 Å. Fuera de esta zona nuestros ojos no ven. La radiación visible normalmente es producida por los electrones atómicos que no están muy amarrados a los núcleos.

La radiación ultravioleta también es generada por este tipo de electrones, pero contiene más energía que la luz visible, porque sus frecuencias son mayores: van de 1015 a 1017 hertz. Las moléculas de nuestras células visuales no son excitadas por esta radiación. Pero muchas moléculas de los seres vivos pueden sufrir modificaciones importantes al absorber una radiación tan energética, al grado de que estos cambios se pueden traducir en mutaciones genéticas o formación de células cancerosas. Por ello no es recomendable "broncearse" con luz ultravioleta. Por otro lado, probablemente este tipo de luz fue la que contribuyó a la formación de las moléculas primitivas que dieron origen a la vida sobre el planeta. En general, la radiación comprendida entre el infrarrojo y el ultravioleta (incluyendo toda la zona del visible) es la más importante en cuanto a sus efectos biológicos.

Más allá de la luz ultravioleta se encuentran los rayos X, que pueden ser producidos por los electrones más amarrados a los núcleos atómicos, o bien por un frenamiento repentino de electrones que viajan a altas velocidades y chocan contra un blanco (así fue en realidad como los descubrió Rñntgen). Los rayos X son más penetrantes que la luz visible, porque portan más energía. Al penetrar en un organismo pueden por ello dañar moléculas y ocasionar serios perjuicios, como los antes mencionados. Por otra parte, los rayos X son de gran utilidad para la visualización de estructuras internas y la detección de fracturas de huesos, malformaciones, etc. Cabe mencionar que estos rayos —como todas las ondas— se difractan, y por el tamaño de su longitud de onda son difractados con eficiencia por un cristal. El análisis de la difracción de los rayos X se ha convertido en poderosa técnica para la determinación de estructuras de cristales y otros arreglos periódicos de átomos o moléculas.

Los rayos y, que son más energéticos que los rayos X, pueden ser generados de la misma manera, pero usando electrones con velocidades aún mayores. En la práctica no hay una demarcación clara entre los dos tipos de radiación. La radiación gamma también aparece de manera natural como producto de la radiactividad; así fue, de hecho, como se la descubrió. El contenido energético de los rayos gamma llega a ser tan alto, que les permite penetrar gruesos muros de concreto sin una pérdida considerable de su energía. Esta radiación puede alcanzar una frecuencia de 1024 hertz, 10 mil millones de veces más alta que la de la luz visible. A frecuencias más altas aún no se ha logrado detectar radiación alguna.

2. ORIGEN Y DESTINO DE LA LUZ

Resulta, pues, que existen otras radiaciones que se parecen a la luz, pero no solemos llamarlas así. En cambio, es usual que llamemos luz a algo que no lo es. Cuando decimos: se fue la luz, conectaron la luz o tengo que pagar la luz, estamos hablando evidentemente de otra cosa. Porque por fortuna la luz no se ha ido, y no se irá en mucho, mucho tiempo.

Dado que la luz es portadora de energía, es necesario que haya disponible alguna forma de energía para que a partir de ella se pueda generar la luz. La energía eléctrica que se suministra, digamos, a una casa, puede ser utilizada con diversos propósitos: para hacer funcionar el motor de un refrigerador u otro aparato, para calentar un radiador o una plancha, para hacer pasar corriente por un receptor de radio o televisión, para encender una lámpara, etc. Vemos entonces que, aunque por razones históricas usamos el vocablo luz, en realidad nos estamos refiriendo a la energía eléctrica, que sirve —entre otras cosas— para generar luz de manera artificial.

La luz doméstica se produce generalmente por medio de bombillas o focos, que son bulbos de vidrio con un delgado filamento metálico en su interior que se enciende al calentarse con el paso de la corriente eléctrica; el aire del interior es sustituido por un gas inerte para evitar la combustión del filamento. El color de la luz varía según el material de éste; a cada material corresponde un espectro característico, que depende de la temperatura a la cual se calienta el material (como comentamos en la sección 1 del capitulo anterior). Sin embargo, los focos tienen la desventaja de requerir mucha energía para producir poca luz; su eficiencia es aproximadamente del 2%. Casi toda la energía eléctrica que usa un foco se desperdicia en forma de calor. Sólo mediante un adecuado sistema reflector y el uso de finos filamentos de tungsteno-halógeno se ha logrado incrementar recientemente la eficiencia (véase la Figura 45).

 


Figura 45. Fuentes de luz artificial. (a) Focos convencionales, (b) bulbo manufacturado a fines del siglo XX,(c) lámpara de arco, (d) el primer aparato láser, (e) foco moderno de tungsteno-halógeno.

Ya hacia fines del siglo pasado se exploraron otros métodos de producir luz con más eficiencia, mediante descargas eléctricas a través de un gas. El más exitoso de estos intentos, producido por primera vez en 1910 en Francia, fue sin duda el tubo de neón, que sigue utilizándose para anuncios luminosos.

En las últimas décadas se ha extendido el uso de otro tipo de fuentes luminosas, entre ellas las lámparas de vapor de mercurio y de sodio, y las fluorescentes. Las lámparas de mercurio y de sodio se encienden al calentarse el vapor que contienen en su interior. En cambio, en las lámparas fluorescentes se produce una descarga eléctrica a través de vapor de mercurio, y este vapor ionizado radia luz ultravioleta, que es invisible. Pero el interior del tubo está cubierto de una mezcla de compuestos químicos llamados fósforos (como los que cubren la pantalla del televisor), que se encienden cuando les llega esta luz ultravioleta. Así, las lámparas fluorescentes pueden producir cualquier color, dependiendo de los fósforos que se utilicen en su fabricación. A diferencia de las lámparas de vapor, las fluorescentes funcionan en frío. La eficiencia de estas lámparas es 5 o 6 veces mayor que la de los focos, pero sigue siendo baja (apenas el 10% de la energía invertida se transforma en luz visible).

A comienzos de los años sesenta se inventó otro tipo de fuente de luz, que recibió el nombre de generador óptico cuántico, o simplemente láser (palabra formada por las iniciales de Light Amplifícation by Stimulated Emission of Radiation). En este aparato la emisión de la luz también proviene de los electrones atómicos que se desexcitan. Pero algunos de los fotones emitidos chocan con otros átomos excitados que, como respuesta, emiten fotones idénticos. Los dos fotones pueden a su vez chocar con otros átomos excitados, y así sucesivamente, produciéndose una amplificación de la emisión. Para que esto suceda tiene que haber naturalmente una alta concentración inicial de átomos excitados, la cual puede haberse producido, por ejemplo, por descarga eléctrica o por iluminación.

A diferencia de las otras fuentes que hemos mencionado, el láser emite radiación coherente, toda en fase y en la misma dirección, sin dispersarse; el instrumento tiene la extraordinaria capacidad de emitir energía luminosa en forma concentrada en el espacio, en el tiempo y en el espectro. Por ejemplo, hay láseres que producen luz de un color muy puro, o sea de una sola frecuencia; otros que producen pulsos brevísimos, de una duración de 10-12 segundos; otros más, que pueden enviar hasta la Luna un haz tan estrecho, que aun su reflejo puede llegar en forma concentrada hasta la Tierra. Actualmente se alcanza con la luz de láser una intensidad de l016 watts/cm2, un millón de billones superior a la intensidad de luz que sale de una bombilla común (véanse las Figuras 1 y 45(d)). Por sus extraordinarias características, el láser tiene ya las más diversas aplicaciones en la industria, la medicina, la química, los transportes, las comunicaciones, la informática, los espectáculos..., incluso, desgraciadamente, en el desarrollo de nuevas armas. Su direccionalidad, coherencia e intensidad han hecho de la luz de láser un factor importante de desarrollo de la holografía, que es una técnica de formación de imágenes tridimensionales basada en la difracción e interferencia de la luz.

Sobre nuestro planeta surgen ocasionalmente fuentes naturales de luz que pueden ser impresionantes, como lo es un volcán en erupción. Cabe mencionar también algunos bellos ejemplos de organismos vivos que son luminosos, como ciertos hongos, bacterias, gusanos, crustáceos, peces e insectos. La luz que emiten estos organismos es en general muy tenue, pero la podemos apreciar gracias a que nuestra vista es capaz de adaptarse a bajas intensidades de luz. Este fenómeno, llamado bioluminiscencia, es provocado por reacciones químicas muy complejas que se llevan a cabo entre moléculas especiales de los organismos emisores. Extrayendo y purificando dichas moléculas, y proporcionándoles la energía necesaria, se ha logrado reproducir esta luminiscencia en el laboratorio.

La fuente principal de luz para nosotros sigue siendo el Sol, del cual recibimos una iluminación mayor que la que jamás podríamos pensar en generar artificialmente. De hecho, la radiación solar ha sido un factor primario para el origen y la evolución de la vida y para la ecología de nuestro planeta; entre otras cosas, lo mantiene a una temperatura agradable, provoca la evaporación de agua, inicia la fotosíntesis, que es la puerta de entrada de la energía en el ciclo biológico, y nos proporciona una excelente iluminación, al menos durante cerca de medio día. Sin la luz del Sol no habría vida sobre la Tierra.

En la figura 46 se presenta una curva de la intensidad de la radiación solar para diferentes longitudes de onda. La curva superior representa la luz incidente sobre la capa superior de la atmósfera. La curva inferior la intensidad que llega al nivel del mar, después de haber atravesado la atmósfera (suponiendo que ésta no contuviese demasiadas impurezas). Es interesante observar que la mayor parte de la luz ultravioleta es absorbida por el ozono, el oxígeno y el nitrógeno de la atmósfera, mientras que el vapor de agua y el bióxido de carbono absorben la luz infrarroja. Así resulta que la atmósfera terrestre es como una ventana que sólo deja pasar la luz visible, justamente aquella que nos es útil y no daña nuestros organismos. Dicho más correctamente, la vida sobre la Tierra ha aprendido a aprovechar de todas las maneras posibles la radiación que le llega por esta ventana; y no es casual, por ello, que la luz que perciben nuestros ojos esté comprendida entre los 4 000 y los 7 000 Å.



Figura 46. El espectro de la radiación solar. La curva superior representa la intensidad de luz incidente sobre la atmósfera y la curva inferior la luz que llega al nivel del mar.

El Sol, como todas las estrellas, tiene un brillo propio porque la materia de su interior, al estar sujeta a altísimas presiones y temperaturas, choca frecuentemente entre sí. Tan violentas son estas colisiones, que algunas de ellas dan lugar a la fusión de dos o más núcleos atómicos para formar uno solo. En la secuencia más común participan cuatro protones (o núcleos de hidrógeno) que reaccionan en cadena para dar lugar finalmente a un núcleo de helio. Pero resulta que este núcleo tiene menos masa que la suma de las cuatro partículas originales, o sea que hay una pérdida de masa durante la fusión. Esta masa perdida se transforma en energía de radiación, según la famosa fórmula de Einstein:

E = mc2.

La cantidad de energía liberada en esta forma es impresionante; en el interior del Sol se queman cada segundo cuatro millones de toneladas de materia. (Pero aún contiene el Sol la suficiente masa para seguir radiando casi con la misma intensidad durante miles de millones de años.) De toda la radiación emitida por el Sol, la Tierra recibe sólo el 0.0000001%; casi todo el resto se escapa del Sistema Solar.

¿A dónde va a dar la luz que se ha escapado? El espacio está casi vacío de materia, por lo que la luz puede viajar grandes distancias antes de ser interceptada. Por ejemplo, la siguiente estrella más cercana a nosotros está a cuatro años luz de distancia, lo cual significa que la luz que recibimos de esa estrella ha tenido que viajar durante cuatro años. De hecho, la radiación proveniente de objetos que están a más de 10 mil millones de años luz de distancia parece llegarnos sin problemas, lo cual indica que el espacio intergaláctico es sumamente transparente (véase la Figura 47).


Figura 47. En el centro de esta fotografía (señalado con una flecha) puede verse un cuasar que se encuentra a más de 16 mil millones de años luz de distancia, según cálculos basados en su corrimiento espectral. Se cree que la luz que recibimos de este objeto fue emitida poco después de la gran explosión. Los otros objetos de la fotografía se encuentran a diferentes distancias; algunos de ellos dejaron de existir mucho antes de que se tomara esta foto. En cambio, otras estrellas lejanas surgidas hace tiempo no aparecen en la foto porque aún no nos llega su luz. La foto muestra, por lo tanto, un mundo que nunca ha existido, o fragmentos del mundo que han existido en diferentes épocas.

Por otra parte, el corrimiento espectral de las galaxias lejanas hacia el rojo nos indica que el Universo está en expansión, de manera que en el pasado la materia debe haber estado más concentrada, y por ello los choques de la luz con la materia eran más frecuentes. Los cosmólogos consideran que gracias a esta estrecha interacción, la materia y la radiación deben haber llegado a una situación de equilibrio en el pasado remoto. Pero con la expansión del Universo, la densidad de materia y de luz ha disminuido, y la interacción entre ambas se ha reducido a tal grado que prácticamente ya no se crean ni se destruyen fotones (a escala cósmica); en otras palabras, la cantidad de luz existente en el Universo es constante.

Esta radiación cósmica de fondo cubre todo el espectro, desde las ondas de radio hasta los rayos gamma, pero la contribución de mayor intensidad se encuentra en el lejano infrarrojo. Esto significa, de acuerdo con la fórmula establecida por Planck para la radiación térmica (sección IV.1), que la temperatura del Universo es muy baja, del orden de tres grados absolutos. No se sabe exactamente cuánta luz hay en el Universo, pero se calcula que por cada protón o neutrón hay mil millones de fotones. En realidad, ésta es una cantidad pequeña; el espacio intergaláctico es muy oscuro. Se necesitan aparatos muy sensibles para detectar la radiación de fondo. Pero cuando el Universo era 100 veces más pequeño, esta radiación de fondo era suficiente para iluminar el cielo como si todo el tiempo fuera de día. Si alguna vez el Universo vuelve a contraerse (los cosmólogos aún no se ponen de acuerdo sobre ello), podrá recuperar su brillo de antaño; pero en todo caso habría que esperar algunos miles de millones de años para que esto sucediera.

3. A FIN DE CUENTAS, ¿QUÉ ES LA LUZ?

luz f. Agente físico que ilumina los objetos y los hace visibles. Claridad que irradian los cuerpos en combustión, ignición o incandescencia...

(Diccionario Porrúa de la Lengua Española, México, 1980).

Todos sabemos qué es la luz, pero no es fácil decir lo que es.

(La vida de Samuel Johnson, 1791), J. BOSWELL.

¿Alguna vez ha intentado usted definir una mesa? Generalmente uno reconoce una mesa al verla, pero si se intenta dar una definición, habrá siempre alguna mesa que no se ajuste a ella, a menos que la definición sea tan vaga y ambigua que hasta lo que no es una mesa pueda ser considerado como tal.

Algo similar sucede con la luz, con la agravante de que se trata de un concepto considerablemente más complejo y sutil que el de mesa. Cualquier definición que pretendiéramos hacer de la luz resultaría incompleta, porque seguramente dejaría de lado algún aspecto particular de este complejo fenómeno. Sin embargo, a grandes rasgos hemos aprendido a identificar la luz, conocemos muchas de las características que le son propias, sabemos cómo se comporta ante determinadas circunstancias, y reconocemos los fenómenos en los que interviene. Hemos adquirido una idea de la luz, que se va afinando y enriqueciendo en función de nuevas experiencias.

Hemos visto que en la historia de las teorías ópticas, dos modelos muy diferentes sobre la naturaleza de la luz han competido durante siglos. Por un lado, se ha pensado en la luz como algún tipo de movimiento ondulatorio; por otro, se le ha considerado como un flujo de partículas muy veloces. Durante el siglo XIX el modelo ondulatorio logró una aceptación casi universal gracias a una impresionante serie de experimentos y de desarrollos teóricos. Con el cambio del siglo, sin embargo, fueron descubiertas algunas propiedades de la luz que aparentemente sólo podían ser explicadas con una teoría corpuscular. La naturaleza de estos corpúsculos, los fotones, ha resultado ser considerablemente más sutil de lo que se imaginaba en un principio, pero al menos parecen poseer una determinada cantidad de energía y de impulso en forma de paquete, por lo que de alguna manera se asemejan a partículas ordinarias, aunque no se tiene idea de su tamaño, no tienen masa y siempre viajan con la misma velocidad.

La existencia de estos dos modelos, cada uno de ellos parcialmente adecuado para explicar ciertos fenómenos luminosos, ha presentado un formidable dilema a los físicos. En cierto modo, la mecánica cuántica, desarrollada durante las primeras décadas de este siglo, ha venido a dar una respuesta a esta aparente incompatibilidad entre ondas y partículas, al mostrar que lo que usualmente se ha identificado como partícula (como los protones, los electrones, los neutrones, etc.) también posee propiedades ondulatorias.

En efecto, los constituyentes elementales de la materia también se comportan en ocasiones como ondas. Tómese, por ejemplo, un haz de electrones, lanzados todos con la misma velocidad: resulta que pueden ser difractados y se les puede hacer interferir, como a las ondas (Figura 48). Es más, se le puede asignar una longitud de onda. De acuerdo con la fórmula propuesta por Louis de Broglie en 1923, la longitud de onda asociada a partículas de masa m y velocidad v es

l = h / mv,

donde nuevamente interviene la constante de Planck, h. Esta constante es sumamente pequeña, por lo que también la longitud de onda asociada a los corpúsculos es en general pequeña. Por ejemplo, los electrones que son acelerados en un microscopio electrónico tienen una longitud de onda de 5 Å o aun menor, o sea mil veces más pequeña que la de la luz visible. De hecho, ésta ha sido la base del éxito de la microscopía electrónica: cuando una muestra es "iluminada" con electrones de tan pequeña longitud de onda, se produce una imagen mucho más fina que al ser iluminada con luz visible.

Tanto con la luz como con la materia, el aspecto ondulatorio se pone particularmente de manifiesto cuando el flujo (de luz o de partículas) es muy intenso. En cambio, cuando la intensidad del flujo es baja, sobresale el aspecto corpuscular. Para ilustrar esto recordemos el experimento de las dos rendijas, que fue descrito en el capítulo II. Cuando este experimento se realiza con una cantidad normal de luz, aparece muy claro el fenómeno de interferencia, que es ondulatorio. Pero una iluminación normal equivale a una enorme cantidad de fotones. Si la intensidad de la luz se reduce mucho, es posible detectar en la pantalla cada uno de los fotones. (Para ello es necesario reducir de tal manera la intensidad de la luz, que a simple vista no se detecta; pero el material fotosensible de la pantalla sí debe registrar su llegada). Se observa entonces que los fotones van incidiendo al azar sobre los diversos puntos de la pantalla, construyéndose poco a poco el patrón de interferencia, que se ilustra en la figura 48(a). Sólo cuando han llegado muchos fotones (todos con la misma energía, o sea con la misma longitud de onda) se ven claras las franjas de interferencia. Si el experimento se realiza con electrones o neutrones (u otras partículas) en vez de fotones, se observa el mismo fenómeno: la estructura granular del patrón de interferencia se pierde gradualmente al aumentar la intensidad del haz de partículas o el tiempo de exposición (Figura 48(b).





Figura 48. Difracción ocasionada por el borde de un obstáculo (véase también la Figura 17). (a) Patrón de difracción de la luz. (b) Patrón de difracción de electrones.

No hay que perder de vista, sin embargo, que en el caso de las partículas estamos hablando de ondas asociadas a la materia, mientras que en el caso de la luz se trata de ondas de radiación electromagnética, que escapan de la materia que les dio origen, y que dejan de existir cuando ésta las reabsorbe. En el primer caso hay un transporte de materia: son las partículas mismas las que se mueven, y no dejan de existir aunque cambien de velocidad o se detengan. En cambio, la luz, al ser radiación, no puede detenerse, y no viene acompañada de un flujo de materia, aunque sí de energía.

Al estar compuesta de campo electromagnético oscilatorio, la luz se puede considerar como una excitación pasajera del vacío o del medio en que se está propagando; excitación que es creada por la materia, puede afectar a la materia que encuentra en su camino, y eventualmente es aniquilada por la misma materia. Estos campos eléctrico y magnético en todo momento son perpendiculares a la dirección del rayo de luz; por ello se dice que la luz es una onda transversal (recuérdese la sección II.5).

Aunque la luz es un fenómeno ondulatorio, transporta la energía, el momento lineal y aun el momento angular en forma cuantizada, según la visión actual. Esto implica que la interacción de la luz con la materia no se da de manera continua, sino discreta; el intercambio de energía no es gradual, sino escalonado. La aparente continuidad de la luz a la que estamos tan acostumbrados se debe a la escala macroscópica de nuestras experiencias cotidianas y a la enorme cantidad de fotones que normalmente nos iluminan. Probablemente usted está recibiendo en estos momentos cerca de 1017 fotones por segundo en cada centímetro cuadrado de su piel expuesta a la luz; ¿cómo podría sospechar siquiera que la luz tiene este carácter discreto?

La rápida, accidentada y a menudo controversial evolución de las teorías ópticas nos conduce a sospechar que quizá muchas de las afirmaciones que hacemos hoy día sobre la luz tienen carácter provisional. La experiencia científica nos ha enseñado que no hay teoría que pueda ser definitivamente confirmada; las teorías sólo se van consolidando conforme muestran su capacidad predictiva y extienden su dominio de aplicabilidad. Con optimismo podemos suponer que gradualmente nos hemos ido acercando a un mejor conocimiento del fenómeno de la luz, pero probablemente no habrá que esperar mucho tiempo para aprender más sobre ella y para corregir algunas de las afirmaciones presentes. Cabe aquí recordar, a guisa de moraleja, una confesión que escribió Einstein en 1951, a medio siglo de distancia de su histórico trabajo sobre el efecto fotoeléctrico:

Todos estos 50 años de reflexión concienzuda no me han traído más cerca de la respuesta a la pregunta ¿qué son los cuantos de luz? Hoy día, todo Hugo, Paco o Luis cree que sabe la respuesta, pero está equivocado. 


ÍndiceAnteriorPrevioSiguiente