X. PROLIFERACIÓN HADRÓNICA: MESONES, BARIONES Y SUS DESCUBRIDORES
E
L DESCUBRIMIENTO
del pion completó una etapa en la física de las partículas elementales. La materia era concebida como hecha de átomos ligados por fuerzas eléctricas. Una perturbación suficiente, en este nivel, implica la emisión de fotones debida al reacomodo de electrones. En el centro del átomo, el núcleo ejerce su atracción sobre los electrones, y contiene la totalidad de la carga eléctrica positiva y casi toda la masa. El núcleo está constituido por protones y neutrones que interaccionan entre sí a través de nuevas fuerzas, una de ellas responsable de la atracción y estabilidad del núcleo, mientras la otra, de menor intensidad, se manifiesta en el decaimiento b , en el que el núcleo emite electrones o positrones. La fuerza electromagnética tiene al fotón, y la fuerza nuclear fuerte tiene al pion. Por otra parte, la fuerza nuclear débil requiere de la existencia de una partícula aún no descubierta (el neutrino). En cambio, aparece el muon como miembro sorpresa entre la familia de las partículas descubiertas.Tras medio siglo de investigación, el número de constituyentes elementales había llegado sólo a ocho. ¿Serían los únicos? Decididamente no. Desde 1947 el número de partículas aumentó en forma notable. El desarrollo tecnológico de la posguerra impulsó el desarrollo de aceleradores y detectores. Como consecuencia, en los diez años que siguieron, el número de partículas elementales se quintuplicó, llegando a ser casi un centenar en 1964. En el presente capítulo se reseña esta explosión demográfica en el dominio de las partículas elementales.
En diciembre de 1947, George Dixon Rochester y Clifford Charles Butler, de la Universidad de Manchester, publicaron evidencias sobre un nuevo tipo de partículas. Como otros, Rochester y Butler estudiaban las trazas dejadas por los rayos cósmicos en emulsiones fotográficas (véase figura 9). Los dos eventos en que se basó su anuncio dejaron trazas con una forma que recuerda la letra V, por lo que les dieron ese nombre: partículas V. El primer evento registrado en octubre de 1946 fue interpretado como una partícula neutra (que no deja huella en emulsiones fotográficas) que decae en dos partículas cargadas (los brazos de la V). La segunda traza, registrada en mayo de 1947, muestra la trayectoria recta de una partícula cargada que se quiebra en un punto, resultando en una V cuyos brazos están muy abiertos. El punto de quiebre (el vértice) se interpretó como el decaimiento de una partícula cargada en otra cargada y una neutra. En ambos casos, a la partícula que decae se le estimó una masa más de mil veces mayor que la masa del electrón.
![]()
Figura 9. Decaimiento de las partículas V o L. Las lineas gruesas representan las trazas dejadas por una de estas partículas al decaer en una cámara de Wilson. La imagen de la izquierda corresponde a una partícula neutra (que no deja huella) decayendo en dos cargadas, y la de la derecha una carga que decae en otra cargada más una neutra.
Menos de un año después, Robert B. Brode, de Berkeley (California), y Louis Leprince-Ringuet, de París, anunciaron evidencias independientes sobre la existencia de otra partícula cuya masa es 700 veces mayor que la del electrón. El francés la denominó
t
. Pocos meses después, el grupo de Bristol encontró el primer ejemplo del decaimiento de una partículat
en tres piones cargados.El interés por la nueva fenomenología atrajo a varios laboratorios a dedicar esfuerzos en este tipo de investigaciones. A principios de 1950, Anderson encontró más de treinta ejemplos de trazas de partículas V. Mientras tanto, en octubre de ese año, el grupo de Manchester logró identificar a un protón como uno de los productos del decaimiento de una V, siendo el otro un pion o un muon. Por estas fechas las partículas V pasaron a llamarse L .
Hacia 1953 los expertos intentaron coordinar sus esfuerzos y, como primera acción, adoptaron la nomenclatura de mesones L para los piones y los muones, mesones
k
para aquellos de masa intermedia entre el pion y el protón, e hiperones para aquellas partículas con masa superior a la del protón y el neutrón, como las L . Posteriormente se introdujo el término de barión para congregar a los nucleones (protón o neutrón) y a los hiperones en un solo grupo.Entre lo que se da a conocer ese año de 1953, destaca la identificación de un protón y un pion negativo en el decaimiento de una L neutra. También se encontraron casos de L cargadas que decaen, ya sea en un protón más un pion neutro o en un neutrón más un pion positivo. Más sorprendente aún, el grupo de Anderson encontró un fenómeno en el que una L cargada decaía en otra L neutra más un pion cargado. Era claro que había más de un tipo de hiperones.
En cuanto a los mesones
k
, se encontraron dos grupos: aquellos que decaen vía la emisión de dos partículas (piones), denominados q y aquellos que decaen en tres partículas (ya sean piones, muones y/o neutrinos), entre los que se hallaban last
, lask
y las X. Entre los mesones k parecía haber ciertas similitudes. Por ejemplo, last
, las k y las X mostraban tener vidas medias muy parecidas. Además, las mediciones de las masas de last
y las q resultaron ser idénticas.¿Se trataría simplemente de modos alternativos de decaimiento de un mismo tipo de partícula? Esta hipótesis sencilla desafortunadamente se encontraba reñida con una ley empírica conocida como conservación de la paridad, para la que, hasta entonces, no se conocían contraejemplos. Tal principio se refiere a la indistinguibilidad de un fenómeno físico observado ya sea directamente o a través de un espejo. Las fuerzas gravitacionales, electromagnéticas, así como la nuclear fuerte, obedecen a este principio fielmente, de manera que todo lo que vemos a través de un espejo es tan descriptible con base en la física que conocemos como lo que vemos en forma directa. Por esta razón, los físicos consideraban a la paridad como inviolable.
Hacia 1955 la evidencia experimental acumulada seguía indicando una notable similitud entre las vidas medias, por un lado y las masas de las partículas
t
y q , por otro. Escépticos sobre una coincidencia tal, los chinos Cheng Ning Yang y su alumno Tsung Dao Lee se dieron cuenta de que, respecto de la fuerza débil propuesta por Fermi años atrás, nadie había comprobado la validez del principio de paridad, e hicieron notar que, si esta regla fuera violada por la fuerza de Fermi, no habría problema en unificar lat
y la q en una sola partícula. Las pruebas experimentales sobre esta hipótesis fueron realizadas por primera vez por otro investigador chino, la señora Chien Shiung Wu de la Universidad de Columbia. Por su trabajo teórico, Lee y Yang recibieron el Premio Nobel en 1957.En su experimento, Wu observó el decaimiento del Co60 por emisión de rayos b (electrones). Como se vio antes, los electrones poseen un momento magnético intrínseco debido a su espín, de manera que se les puede considerar como pequeños imanes. Si la muestra radiactiva es expuesta a un campo magnético externo, los b emitidos se alinean con el campo rompiendo la isotropía. Es decir, los electrones se polarizan por la influencia del campo magnético externo. Si el decaimiento b conservase la paridad, deberían emitirse tantos electrones cuyo espín fuese paralelo respecto al campo externo como en una dirección antiparalela, es decir, dirigida en el sentido inverso. La observación de Wu indicó claramente que esta simetría no existía.
La violación de la paridad fue sólo el primero de los golpes que recibieran los llamados principios de conjugación PTC (paridad, tiempo y carga). Según estos, no sólo el cambio de paridad, sino también la inversión en el sentido del tiempo o el intercambio de partículas por sus antipartículas debería dejar inalterada la descripción física. En la actualidad sólo sobrevive, como principio, aquel en el que la conjugación simultánea de las tres variables P, T y C deja invariante la descripción de cualquier fenómeno físico, incluido el decaimiento b , efecto de la fuerza débil.
X.4. L
AS PARTÍCULAS "EXTRAñAS"
Otra sorpresa acarreada por las nuevas partículas, en este caso las L , se refiere a una marcada asimetría entre la relativa facilidad con que éstas se producen, comparada con su vida media. La asociación entre la probabilidad de crear una partícula y su vida media indica que las partículas que se crean fácilmente viven poco y viceversa. Sin embargo, las partículas V parecían tener una vida media notablemente mayor que la esperada de acuerdo con esta regla. Para resolver este dilema, el estadunidense Murray Gell-Mann, de quien sabremos más en el próximo capítulo, propuso la existencia de un nuevo número cuántico llamado extrañeza, que se conserva en las interacciones en que actúa la fuerza fuerte, pero no en aquellas en que actúa la débil. De esta forma, en la creación de partículas L , que ocurre vía la interacción fuerte se conserva la extrañeza al crearse simultáneamente una partícula asociada. Sin embargo, al decaer por acción de la fuerza débil, la violación de la extrañeza aumenta la vida media.
El decaimiento de unas partículas L , en otras partículas L , indicaba, claramente, la existencia de un espectro de masas. Las primeras mediciones de estas masas permitieron la identificación de partículas más pesadas. La denominación propuesta siguió utilizando a la letra L , para los hiperones más ligeros, seguida de la ñ = y la X ñ en orden ascendente de masa.
La mayoría de los resultados descritos hasta ahora habían sido obtenidos, como siempre, con base en observaciones de rayos cósmicos. Este panorama habría de cambiar hacia mediados de la década de 1950, pues los aceleradores de partículas por esas fechas alcanzaron las energías necesarias, con la enorme ventaja de producir haces muy intensos de partículas con energía uniforme.
Entre los primeros estudios interesantes estuvieron los de Fermi, quien, con un ciclotrón en la Universidad de Chicago, produjo haces de piones que utilizaba para bombardear protones. En 1953 sus observaciones indicaron la existencia de resonancias pion-nucleón, que él denominó partículas D. Las resonancias pueden verse como partículas de vida media muy corta.
Hacia 1955 entró en operación el acelerador Bevatron, en Berkeley, capaz de producir haces de protones de energías del orden de los miles de MeV.13
Esta energía es la mínima necesaria para producir antiprotones. El experimento, realizado por O. Chamberlain, Emilio Segre, C. E. Wiegannd y T. Ypsilantis, demostró que la predicción de Dirac sobre la existencia de antimateria era válida también para el protón. Segre y Chamberlain recibieron el Premio Nobel 1959 por este logro. En 1956, B. Cook, G. R. Laqmbertson, O. Piccioni y W. A. Wentzel, con el mismo acelerador, descubrieron el antineutrón. La simetría entre materia y antimateria, en el sentido de que cada partícula tiene su antipartícula, ha sido comprobada sistemáticamente desde entonces.
Como ya vimos, en 1956 Reines y Cowan demostraron la existencia del neutrino, utilizando el reactor de Savannah River. Poco tiempo después, mientras el dilema sobre la paridad se resolvía, los físicos experimentales intentaron producir haces de neutrinos para poder estudiar con detalle la interacción débil. Un proceso que debía ocurrir con cierta frecuencia, pero que jamás se había observado, era el decaimiento de un muon en un electrón más un rayo g . Tal proceso se entendió como la emisión de un electrón acompañado de un par neutrino-antineutrino en que la aniquilación de estos últimos producía la g mencionada. ¿Qué inhibía este mecanismo? Una posibilidad era que hubiera algo que evitara que el par neutrino-antineutrino se aniquilara, indicando la existencia de dos tipos distinguibles de neutrinos.
A principios de la década de 1960 en el laboratorio americano de Brookhaven se montó un experimento para comprobar esta hipótesis. El resultado, luego de casi un año de experimentación, fue que efectivamente existen dos tipos de neutrino, uno asociado al electrón y otro asociado al muon. De esta forma, al decaer el muon se emite un electrón con su antineutrino más un neutrino muónico, de manera que neutrino y antineutrino no se aniquilan por no ser uno antipartícula del otro.
Además de las resonancias D del nucleón, en 1960 M. Alston y su grupo encontraron la primer resonancia asociada a una partícula extraña, la ñ =. El año siguiente, el mismo grupo descubrió la primera resonancia para una L , y en 1962, G. M. Pjerrou informó sobre la primera resonancia para una X . Entre los mesones, las sorpresas aparecieron casi simultáneamente en 1961, en forma de resonancias no extrañas. Primero apareció la p , descubierta por D. Stonehill y sus colaboradores; posteriormente el grupo de B. Maglic observó la w y, finalmente la h fue encontrada por A. Pevsner y colaboradores.
Hacia 1963, el número de partículas elementales había aumentado hasta casi un ciento. Las sensibles a la interacción fuerte, ahora denominadas hadrones, que englobaban a los bariones y a los mesones, formaban el grueso de ellas. Con sólo cuatro leptones, sin contar sus respectivas antipartículas, el número considerablemente mayor de hadrones descubiertos hasta entonces, y especialmente la existencia de estados excitados para muchos de ellos, indicaba marcadamente la existencia de una estructura interna en estas partículas, es decir que su calidad de elementales era ya cuestionable. ¿De qué están hechos los hadrones?
El mismo año en que se descubrió el pion cargado, Clifford y Butler iniciaron el descubrimiento de nuevas partículas (sección X.2). La nueva fenomenología puso de manifiesto la violación, por parte de la interacción débil, de la simetría especular (sección x.3). Otra propiedad interesante de las nuevas partículas se explica si se supone una nueva cualidad en la naturaleza: la extrañeza (sección X.4). La construcción de aceleradores de partículas cada vez más potentes dio por resultado el descubrimiento de una nueva espectroscopía (sección X.5).
![]()