X. PREVENCIÓN Y TRATAMIENTO DE LAS INFECCIONES VIRALES
L
AS INFECCIONES
virales en humanos, animales y plantas son causa de muerte, daño y pérdidas económicas. Las mejoras en el nivel de salud pública e higiene personal contribuyen en forma muy importante y efectiva a controlar la diseminación de las enfermedades infecciosas, incluyendo las causadas por virus. Sin embargo, las vacunas tienen un papel primordial en la prevención activa de las enfermedades virales en el hombre y en los animales. Las vacunas pueden ser infecciosas (hechas con virus activos) o no infecciosas (hechas con virus inactivados). El proceso de vacunación se basa en la idea de que se puede lograr inmunidad específica contra una enfermedad, en particular si se provoca ésta en condiciones controladas de manera que el individuo no padece los síntomas asociados con la enfermedad y el sistema inmune reacciona produciendo un arsenal de anticuerpos y células inmunes con capacidad para destruir o neutralizar cualquiera otra invasión por parte del mismo agente infeccioso.El procedimiento de atenuación permite obtener cepas de virus que tienen una reducida capacidad para producir enfermedad; estas cepas se denominan avirulentas, en contraste con las cepas virulentas capaces de producir enfermedad. Las cepas avirulentas son obtenidas por métodos empíricos como el pasar (propagar) un virus determinado en cultivos de células que provienen de una especie animal diferente a la del hospedero natural de ese virus en particular. También la multiplicación de un virus a temperaturas subfisiológicas o la coinfección de un mismo cultivo con cepas virulentas y avirulentas de un virus en particular contribuyen a la atenuación del virus. El uso de cepas emparentadas antigénicamente con una cepa virulenta, pero que provocan una enfermedad más leve en el hospedero, es una técnica conocida desde el tiempo de Edward Jenner, quien en 1798 utilizó preparaciones de virus de la viruela vacuna para inmunizar humanos contra la viruela. Actualmente, se utiliza un virus de la vacuna, descendiente del virus de la viruela vacuna, para "vacunar" contra la viruela. De hecho, vacuna se ha convertido en sinónimo de cualquier substancia inmunogénica utilizada en la prevención de enfermedades infecciosas.
Las vacunas preparadas a partir de virus muertos o inactivos deben carecer de infectividad y, sin embargo, ser suficientemente inmunogénicas para provocar inmunidad protectora. Los agentes inactivantes utilizados para matar al virus deben ser capaces de actuar sobre el ácido nucleico viral. El formaldehído y la b-propiolactona son dos de los agentes más usados para inactivar preparaciones virales. El formaldehído produce entrecruzamientos entre las proteínas virales y también afecta a los grupos amino presentes en los nucleótidos. La b-propiolactona inactiva a los virus por medio de la alkilación de las proteínas y ácidos nucleicos virales. Un problema fundamental asociado con la preparación de una vacuna muerta consiste en que se debe garantizar la completa inactivación de todas las partículas virales presentes en una dosis de la vacuna. Cuando se preparan grandes lotes de vacuna se observa que una pequeña fracción de la población viral es inactivada con mayor lentitud debido a que algunas partículas virales forman agregados y cúmulos en los cuales se dificulta el acceso al agente inactivante. Esto implica que debe incrementarse el tiempo de incubación en presencia del agente inactivante; esta situación tiene el inconveniente de que puede propiciar la pérdida de la capacidad inmunogénica de las partículas virales inactivadas.
El principal problema de las vacunas preparadas con virus atenuados consiste en garantizar la estabilidad genética de la cepa avirulenta, de manera que no revierta en forma espontánea o accidental al estado virulento. Esta reversión al estado virulento puede ocurrir por causa de eventos de recombinacion genética espontánea entre el virus presente en la vacuna y algún otro tipo de virus que pueda estar presente en forma natural en el individuo vacunado.
Las vacunas deben producir imnunidad suficiente y permanente, pues de lo contrario el virus invasor puede ser capaz de multiplicarse. Esto último ocurre en el caso de vacunas, como la vacuna contra la fiebre aftosa del ganado, la cual sólo confiere inminidad parcial y por lo tanto actúa como una presión selectiva que favorece la propagación de virus mutantes poseedores de nuevos variantes antigénicos no reconocidos por los anticuerpos inducidos por la vacuna. Con el paso del tiempo, la cepa de virus resistentes substituye a los otras cepas del virus y entonces se hace necesario desarrollar una nueva vacuna específica contra esta nueva cepa resistente a la vacuna anterior.
Las vacunas pueden ser administradas por vía oral, vía parenteral (inyectadas) o por simple escarificación de la piel con una aguja. La vía de administración depende del tipo de preparación y de la estabilidad física de la misma. Cuando se prepara una nueva vacuna, además de los factores biológicos que determinan la elección entre una preparación muerta o una preparación atenuada, deben considerarse factores socioeconómicos relacionados con el costo, estabilidad a largo plazo de los lotes de vacuna, facilidad en el modo de administrarse de la vacuna y el número de dosis a ser administradas. También debe considerarse el efecto psicológico asociado con las incomodidades y reacciones secundarias (como fiebre, erupciones en la piel, etc.) derivadas de la administración de la vacuna.
El surgimiento de la teconología del
ADN
recombinante o ingeniería genética abre las puertas a la posibilidad de desarrollar vacunas efectivas preparadas a partir de los componentes virales causantes de inducir la respuesta inmune, pero sin los inconvenientes asociados con la presencia de virus íntegros, ya sea que estén inactivados o atenuados.A diferencia de lo que sucede con las infecciones bacterianas, la quimioterapia de las infecciones virales.todavía se encuentra en etapas primitivas. La multiplicación de los virus está estrechamente ligada al metabolismo de la célula hospedera debido a que el virus por lo general utiliza la propia maquinaria celular para su replicación. Por lo tanto, resulta difícil encontrar fármacos y compuestos químicos capaces de afectar las funciones virales sin afectar a la célula hospedera. Sustancias químicas con actividad antiviral han sido utilizadas con éxito en el tratamiento de infecciones causadas por virus
ADN
que afectan la conjuntiva y la córnea del ojo. Estos agentes son pirimidinas halogenadas que son incorporadas en elADN
viral e impiden la transcripción y replicación del mismo. Debido a que estos compuestos pueden ser incorporados también en elADN
celular, su uso está limitado a las infecciones que afectan regiones pobremente vascularizadas y con baja actividad metabólica como la superficie del ojo. Por ejemplo, soluciones a 0.1% de 5'iodo-2'-desoxiuridina, un análogo de la timidina, producen mejoría en un 72% de los casos de infecciones oculares causadas por Herpes simplex tipo 1 y adenovirus. En casos extremos como la rara encefalitis viral causada por HSV-1 o por el virus de la vacuna, se pueden utilizar análogos de la citidina (citosina arabinosido) o de la adenosina (adenina arabinosido) con probabilidades de éxito terapéutico. Estas sustancias son extremadamente tóxicas y sólo deben usarse en circunstancias cuando la otra alternativa es la rápida muerte del paciente.La amantadina es un compuesto que se ha utilizado con éxito en la profilaxis y tratamiento de la influenza viral. Durante una epidemia de influenza el número de casos en la población sujeta al tratamiento profiláctico fue equivalente a 21% de los casos presentes en la población no tratada con amantadina.
El ribavirin es un compuesto capaz de inhibir la enzima
ARN
polimerasa del virus de la influenza y también interfiere con el mecanismo de iniciación de la transcripción delARN
viral. De hecho, el ribavirin manifiesta acción antiviral contra un amplio espectro de virus tanto deADN
como deARN
, pero esta acción sólo es efectiva en condiciones de laboratorio, por lo cual el ribavirin en aerosol ha sido aprobado solamente para el tratamiento de infecciones por virus sincitial respiratorio (RSV) en niños.El aciclovir es un compuesto que fue desarrollado en años recientes y que manifiesta una potente acción antiviral contra los virus Herpes simplex tipo 1 y 2. Esta acción selectiva se debe a que el aciclovir es un excelente sustrato para ser fosforilado por la enzima timidina cinasa de estos virus. El resultado de esta reacción de fosforilación es el monofosfato de aciclovir, el cual es a su vez fosforilado por las enzimas cinasas celulares para formar trifosfato de aciclovir; este compuesto tienen gran afinidad por la enzima
ADN
polimerasa de los virus Herpes simplex y, por lo tanto, actúa como inhibidor de esta enzima dando como resultado la inhibición de la síntesis deADN
viral.El aciclovir se utiliza en el tratamiento profiláctico del herpes genital y cutáneo, y también en el tratamiento de las lesiones causadas por el Herpes zoster. En pacientes que sufren de infecciones recurrentes por estos virus, el aciclovir disminuye la duración y magnitud de las recurrencias. Sin embargo, es relativamente frecuente el aislamiento de cepas de estos virus que son resistentes al aciclovir, hecho que limita la utilización masiva de este compuesto. El ganciclovir es un compuesto muy similar al aciclovir y tiene importante acción antiviral contra el citomegalovirus que también forma parte del grupo de los herpesvirus. El foscarnet es un potente inhibidor de las
ADN
polimerasas de los herpesvirus y se utiliza al igual que el ganciclovir, para el tratamiento de la retinitis ocular causada por citomegalovirus.En años recientes se han caracterizado o sintetizado diversos compuestos que manifiestan una acción antiviral contra el virus de la inmunodeficiencia humana (HIV oVIH) en condiciones de laboratorio (in vitro). De estos compuestos solamente la azidotimidina (zidovudina o AZT) ha sido ampliamente utilizada en el tratamiento del
SIDA
. La azidotimidina es un potente inhibidor de la transcriptasa inversa (RT), enzima esencial para la replicación del HIV. Sin embargo, como se verá más adelante, el HIV es un retrovirus y, como tal, su genoma deARN
debe ser transcrito por la RT para convertirlo en una molécula deADN
que constituye el provirus, mismo que se integra en el genoma de la célula hospedera en forma permanente. La expresión de la información contenida en el provirus permite la síntesis de nuevoARN
viral y de las proteínas virales codificadas por este. La azidotimidina no tiene ningún efecto sobre el provirus de HIV ya que sólo es capaz de inhibir la formación del provirus, pero no es capaz de inhibir la expresión del provirus en células que ya están infectadas en forma persistente. Por otra parte, el tratamiento prolongado con azidotimidina favorece la aparición de cepas mutantes de HIV que son resistentes a este compuesto. Desafortunadamente, la experiencia acumulada en los últimos años demuestra que la azidotimidina dista de ser un tratamiento efectivo contra elSIDA.
El interferón tiene actividad antiviral universal y alta actividad específica; por lo tanto, constituye potencialmente el agente ideal para el tratamiento de las infecciones virales Sin embargo, la vida media del interferón administrado por vía parenteral es muy corta (alrededor de 3 horas) debido a que es una molécula inestable que es rápidamente degradada cuando esta fuera de las células. Esto impone la necesidad de utilizar dosis elevadas de interferón para obtener un efecto terapéutico. Quizá en un futuro cercano la metodología del
ADN
recombinante permitirá obtener cantidades industriales de interferón, además de modificar las características moleculares del mismo, de manera que se pueda utilizar el interferón para el tratamiento de las enfermedades virales.![]()