VII. BUENO, ¿Y AHORA QUÉ? APLICACIONES DE LA ECOLOGÍA DE POBLACIONES


En la gran ruleta de los hechos es difícil acertar,
y quien juega suele salir desplumado.

ANTONIO MACHADO

 

 

 

LA TECNOLOGÍA moderna es capaz de producir obras que no hace mucho tiempo habrían sido llamadas milagros. Viajes a la Luna, microcomputadoras, túneles bajo el mar de 50 kilómetros de longitud, trasplantes de órganos, ingeniería genética, etc. Esta tecnología es principalmente la aplicación de las ciencias fisicoquímicas. La bioquímica, la fisiología y la genética tienen sus aplicaciones tecnológicas en la medicina y en la agronomía.

¿Cuál sería la tecnología de la ecología, y en particular la de la ecología de poblaciones? Los problemas pertinentes están más o menos bien definidos: son aquellos en los que se requiere manipular, ya sea para aumentar o para disminuir, una población de interés. Por ejemplo, las plagas agrícolas, tanto plantas como animales, se deben llevar más abajo del llamado umbral económico de daño, que es la densidad de población de la plaga que produce un daño aceptable desde el punto de vista económico (una manzana agusanada de cada 100, por ejemplo). Similarmente, en el control de las enfermedades infecciosas se requiere acabar con el patógeno causante de la infección. Esto se puede lograr atacando directamente al parásito en el hospedero, con medidas farmacológicas, o más indirectamente, utilizando el conocimiento de la ecología del parasitismo. Así, muchas enfermedades del ser humano o del ganado se controlan abatiendo las poblaciones de sus vectores. Los vectores son los organismos que transportan a los microbios, gusanos, etc., de un hospedero a otro, como los mosquitos Anopheles que transmiten el paludismo.

En otros casos, lo que se requiere es mantener estable una población, por razones científicas o culturales. Por ejemplo, se quisiera conservar por un periodo indefinidamente largo a especies como la mariposa monarca, el oso panda, la ballena azul, el rinoceronte indonesio, etcétera.

Por último, puede también ocurrir que se pretendan explotar poblaciones de especies silvestres, ya sea como alimento (cosa que ocurre en las pesquerías), o con fines deportivos, ornamentales (maderas preciosas, mariposas, guacamayas, orquídeas, cactos, etc.), medicinales u otros.

Los problemas mencionados son de índole netamente poblacional y de gran relevancia para el ser humano. La salud o la vida de muchos seres humanos depende de poder resolver algunos de ellos. Sin embargo, aunque hay un gran número de conceptos y métodos de ecología de poblaciones que se aplican a la solución de los problemas mencionados, no se puede afirmar que exista una tecnología propiamente dicha derivada de ella. En el control de plagas, manejo de vectores y explotación de poblaciones se ha dado una situación muy diferente de lo que ocurre con la electrónica, la ingeniería química, la ingeniería mecánica, e incluso, actualmente, la medicina. Los problemas se atacan y se resuelven (o no), en buena medida, en ausencia de una teoría ecológica predictiva. La ecología de poblaciones se enriquece con la experiencia acumulada por los agrónomos, epidemiólogos, biólogos pesqueros, etc., pero a cambio se proporciona muy poco poder predictivo. Aparte de metodologías (nada despreciables), la principal aportación de la teoría de poblaciones a los trabajos aplicados se debe buscar en su poder explicativo y en el contexto general de que provee. Antes de discutir el porqué de la dificultad para predecir veremos algunos ejemplos clásicos de manejo de poblaciones con fines prácticos.

Muchos de los mejores ejemplos de control biológico de plagas han ocurrido en Australia. Hace no menos de 200 millones de años el continente australiano se separó del bloque formado por Sudamérica, la Antártida, África y la India. Como consecuencia, un gran número de grupos de plantas y animales presentes en otras partes del mundo no se encontraban en Australia, hasta que en tiempos muy recientes los colonizadores los introdujeron. Muchas de estas introducciones tuvieron efectos realmente nefastos. Uno de los mejores ejemplos es el de los nopales. Hacia 1840, se introdujeron nopales de la especie Opuntia stricta, los cuales rápidamente se empezaron a extender en las praderas y bosques australianos y se convirtieron en una grave plaga. Sesenta años después, había cerca de cuatro millones de hectáreas ocupadas, y para 1925, unos 24 millones de hectáreas se habían inutilizado (esta extensión equivale a la del estado de Chihuahua). En aproximadamente la mitad de dicha zona, el bosque de nopales era por completo impenetrable para el ganado o el hombre. Como la tierra ocupada era perfectamente adecuada para granjas lecheras o ganaderas, el problema económico resultó ser sumamente serio. Intentar un control mecánico o por herbicidas hubiera sido incosteable, por lo que desde principios de este siglo se inició la búsqueda de un control biológico. Más de 150 especies de insectos que se alimentaban de Opuntia en sus áreas de origen en el continente americano fueron consideradas como controles potenciales, y varias docenas probadas en el campo, sin gran éxito. En 1914 se llevó a Australia un pequeño número de larvas de la palomilla Cactoblastis cactorum, obtenidas en Argentina. Desafortunadamente, las larvas murieron sin que se pudiera probar su efectividad en el campo. En 1925 una nueva población de Cactoblastis fue reintroducida en Australia, cultivada exitosamente y liberada en el campo. Los 2 750 huevecillos provenientes de Argentina en 1925 dieron origen a un explosivo crecimiento, de tal forma que para 1929 se recolectaron, en condiciones naturales, alrededor de tres billones de huevecillos, los cuales fueron redistribuidos en un área mayor. Para 1930 el problema de los nopales en Australia había desaparecido. Los nopales siguieron existiendo en bajas densidades, en un balance con su herbívoro (véase la figura IV.7) que más tarde fue descrito como un "juego de escondidillas", consistente en que un área de nopaleras con Cactoblastis es limpiada tarde o temprano, entonces todas las palomillas mueren de hambre, pero algunos adultos emigrantes son capaces de localizar otro grupo de nopales donde ovipositar y reinician una población local. Al mismo tiempo, las semillas de los nopales están siendo dispersadas y algunas encuentran áreas libres de la palomilla, y el juego recomienza. Los ecólogos de poblaciones aprendieron cosas muy significativas de este ejemplo. La idea de las "escondidillas" es una. Otro concepto importante, analizado previamente, es el efecto estabilizador que una distribución agregada de los ataques tiene sobre la dinámica herbívoro-planta.

Una observación que podemos hacer sobre este ejemplo es que el enemigo natural que finalmente resultó exitoso se encontró por ensayo y error. Ninguna teoría predijo qué especie se habría de usar. El conocimiento científico requerido para resolver el problema fue entomológico y taxonómico. La importancia de un correcto conocimiento taxonómico se ilustra también en el ejemplo de la escama roja, que es una plaga de insectos de los cítricos en California. Este es uno de los casos en que el control biológico no fue exitoso sino hasta después de muchas décadas de esfuerzo continuo. Más de cincuenta enemigos naturales de esta plaga fueron ensayados en California, desde la introducción de la escama en 1870. La especie que resultó ser más efectiva fue la avispa parasitoide Aphytis melitus, pero su introducción en California se retrasó por casi cincuenta años debido a una confusión taxonómica: muchas de las especies de Aphytis que se obtuvieron en otras partes del mundo se identificaron incorrectamente como Aphytis chrysomphali, un parasitoide común en California y que no había resultado efectivo para controlar la escama. No fue sino hasta el descubrimiento de esta confusión cuando se importó y liberó a Aphytis melitus, con mucho mejor éxito que el que había tenido su especie gemela.

Un ejemplo muy claro de cómo se puede obtener una explicación a posteriori de un fenómeno inesperado se tiene en el caso de los gnúes en el parque Kruger, en Sudáfrica, tal y como lo relata Taylor. Entre los años de 1961 y 1970 se presentó una prolongada sequía que amenazaba con deteriorar las sabanas a causa de la actividad de los herbívoros sobre los pastizales resecos. Para disminuir la presión causada por los herbívoros, los guardianes del parque decidieron matar una cierta proporción de cebras y gnúes hasta que la sequía terminara y el pastizal se recuperara. En 1971 el clima mejoró y los pastos recobraron su vigor original. Con la recuperación de los pastos se dejó de matar a los herbívoros y la población de cebras inició su recuperación, pero la de gnúes no lo hizo así. Para 1975 había menos de la mitad de gnúes que en 1969. Los guardianes del parque tenían que responder a la interrogante de por qué el abatimiento de la población era mayor al previsto, y de si la población de leones del parque tendría algo que ver en esta reducción. Para explorar la pregunta se construyó un modelo muy simple de la población de gnúes, estructurada por edades y sujeta a la depredación por los leones. Utilizando datos de campo se dieron valores a los parámetros de las ecuaciones y se corrió el modelo en una computadora. Los resultados fueron muy similares a lo que se había observado en el campo. La población de gnúes teóricos disminuyó en la pantalla de la computadora a una velocidad muy parecida a la observada en la realidad. Los autores del modelo decidieron entonces probar lo que habría pasado de haberse reducido la población de leones concomitantemente a la de herbívoros, en un 20%. Según el modelo, tal reducción en la población de felinos habría bastado para hacer que los gnúes se recuperasen a la par que las cebras. Existía un umbral en la población de gnúes por debajo del cual la mortalidad causada por los leones era superior a la tasa de crecimiento de los gnúes. Esta explicación teórica podría servir de base para plantear la predicción de que la población de gnúes se recuperaría si se redujera adecuadamente la de leones.

Existen también casos en que se pueden usar modelos relativamente simples para sugerir las estrategias de control poblacional. Buenas muestras de ello se encuentran en el campo de la epidemiología. Por ejemplo, Roy Anderson, Robert May, Karl Dietz y otros han calculado los valores de la tasa reproductiva básica, R (véase la sección de parásitos y hospederos), para varias enfermedades en distintas partes del mundo, y han propuesto estrategias de control basadas en los modelos matemáticos correspondientes. Algunos de los resultados de más interés son que la erradicación de la rubéola en la República Federal Alemana requeriría la vacunación de aproximadamente 87% de la población de recién nacidos. En la ciudad inglesa de Cirencester se calculó que habría que vacunar al 92% de los recién nacidos. Estas cifras son sumamente altas y explican por qué la rubéola es aún endémica en Europa.

Otro caso interesante es el del paludismo. Aquí existe un vector (mosquitos del género Anopheles), por lo que las estrategias de control incluyen intentar reducir la población del vector. Un modelo matemático razonable permite obtener una expresión para R, con la cual, usando los datos para el mosquito Anopheles gambiae y el parásito Plasmodium falciparum en África Oriental, es posible calcular que R debe ser aproximadamente 39. El análisis para la expresión de R indica que una estrategia de control basada en la reducción de la población del vector debería disminuir su población no menos de 100 veces, lo cual puede ser muy difícil de lograr en condiciones reales. No menos difícil resultaría controlar la enfermedad usando solamente quimioterapia, ya que el modelo indica que se requeriría mantener protegido con quimioterapia a un 97% de la población humana. El modelo proporciona explicaciones cuantitativas de las causas de la dificultad para erradicar la enfermedad, y al mismo tiempo sugiere estrategias de control de la misma.

Los ejemplos anteriores ilustran cómo el conocimiento ecológico puede integrarse en modelos muy sencillos para atacar problemas prácticos. Los modelos más realistas para el manejo de especies silvestres suelen ser enormemente complicados. Un buen ejemplo de lo anterior es el de las pesquerías de salmón, utilizado por el gobierno del estado de Washington para determinar sus políticas de permisos de uso de diferentes artes (tipos de redes) de pesca. El modelo toma en cuenta las diversas especies de salmón, los efectos en ellas de las distintas artes, las diferencias poblacionales en varias partes a lo largo de la ruta del mar a los sitios de desove, los factores económicos relacionados con la pesquería, etc. El modelo tiene no menos de mil ecuaciones para describir la pesquería, y es tan complicado que tuvo que desarrollarlo un equipo de varios ecólogos, matemáticos y programadores. Una de las hipótesis más interesantes que se derivan de la simulación es que reduciendo el número de pescadores se aumentaría mucho la producción total. En otras palabras, había una sobreexplotación del recurso pesquero. Alcanzar este resultado con precisión cuantitativa es imposible si no se recurre a modelos que integren el conocimiento biológico y económico en una estructura dinámica.

En vista de los ejemplos citados, ¿por qué se mencionó al principio que no existe una verdadera tecnología para el manejo de las poblaciones? Tal vez sea más correcto decir que la tecnología aplicada a los problemas poblacionales tiene características propias que la diferencian muy claramente de las tecnologías derivadas de las ciencias fisicoquímicas, y de la llamada biotecnología. Algunas de estas diferencias son:

1) La investigación y el desarrollo que subyacen a las tecnologías fisicoquímicas se pueden realizar en buena medida independientemente del sitio y del tiempo de su aplicación. Por lo menos en principio esto es cierto, porque las leyes físicas son invariantes para las transferencias de país a país, o de un tiempo a otro (aunque obviamente las condiciones económicas y sociales pueden determinar y, de hecho, determinan las condiciones de aplicabilidad de la tecnología). Por ejemplo, la tecnología de semiconductores se desarrolló en los laboratorios, aunque los dispositivos finalmente se utilizan en las casas, las fábricas, las oficinas, etc. Un corolario de este punto es que la tecnología es transportable de un país a otro, tal vez con modificaciones, pero sin que se altere su funcionamiento básico. Por ejemplo, una refinería requiere de modificaciones dependiendo de la localidad geográfica en la que se vaya a situar, pero no hay ningún cambio en los principios físicos y químicos que subyacen a su diseño.

En contraste, el desarrollo de una respuesta tecnológica a un problema ecológico no puede realizarse más que en el lugar del problema. No podemos importar técnicos finlandeses para que nos digan cómo explotar la selva lacandona (aunque esto se ha propuesto ya). Las diferencias entre un ecosistema y otro son demasiado importantes. Aunque las diferencias ecológicas entre un bosque casi uniespecífico de coníferas y una diversa selva tropical son enormes, incluso entre dos selvas altas en México habrá muchas diferencias de detalle. Por ejemplo, como lo analizan Arturo Gómez-Pompa, Sergio Guevara y Carlos Vázquez, la diferencia entre herbívoros en cada localidad puede determinar que las semillas de un árbol logren germinar en un sitio y en otro no, debido a las microadaptaciones específicas. Una simple consecuencia de este hecho es que no se pueden usar semillas de otras localidades para replantar a ciertas especies.

El punto importante es que la conjunción de climas, suelos, medios ambientes ecológicos e historia hace que cada lugar sea único en un sentido radical. Los ejemplos de éxitos o fracasos en el control biológico de plagas ilustran perfectamente el punto. La decisión de qué organismos deben utilizarse para el control puede (y debe) estar basada en un sólido conocimiento ecológico y taxonómico del problema, aunque nunca hay garantía de los resultados que se obtendrán. Por ejemplo, alrededor de 75% de los casos de intento de control biológico de plagas de insectos han sido completa o parcialmente exitosos, y el resto han concluido en fracasos. Dentro de los casos exitosos hay algunos logrados en el primer intento, usando el enemigo natural "obvio", como sucedió con la maleza Hypericum perforatum en California, controlada con los mismos escarabajos que son exitosos en Australia, donde también se presenta esta maleza. Hay otros ejemplos en que organismos considerados en un momento como poco promisorios, resultan espectacularmente eficiente; tal es el caso de la escama de los cítricos Icerya purchasi, que fue controlada con el escarabajo Vidalia cardinalis. Otras plagas han requerido décadas para su control y en otras más el control ha dependido de organismos que aún no han sido descubiertos por la ciencia en el momento de iniciar el programa. Imaginemos, en contraste, cuál sería el éxito comercial de una compañía de ingenieros que en el concurso para construir un puente se comprometiera a concluir la obra en un lapso de entre uno y veinte años, dependiendo de que se inventara el acero adecuado para la estructura, y cuyo registro de seguridad fuera del 70 por ciento de puentes no derrumbados.

2) Otra importante diferencia entre las tecnologías industriales y la tecnología ecológica" radica en el grado de seguimiento que demanda dicha tecnología. Cualquier programa de control de plagas, aprovechamiento racional de especies silvestres, etc., requiere de un seguimiento constante y riguroso, no sólo para ver si el programa trabaja como era de esperarse en ausencia de nuevos factores (recuérdese el caso de los leones y los gnúes en el parque Kruger) sino porque en la ecología, la aparición de nuevos factores y la desaparición o transformación de otros no es la excepción, sino la regla. Recuérdese el caso de la evolución de la relación conejos-myxomatosis, en Australia, en la que la virulenta enfermedad original se suavizó al mismo tiempo que los conejos se hicieron más resistentes. En una investigación orientada a aumentar las poblaciones de patos en el Refugio Agassiz para la fauna silvestre en Minnesota, Balser, Dill y Nelson trataron de reducir las poblaciones de zorros, mapaches y zorrillos en un periodo de seis años. Estos autores concluyen que ningún sistema de control resultaría efectivo por periodos muy largos. En este caso, los mapaches aprendieron a evitar las trampas envenenadas. Y por supuesto hay muchos ejemplos de plagas agrícolas que parecen surgir de la nada. La roya de la papa, que a mediados del siglo pasado causó la muerte por hambre y enfermedad de casi 1.5 millones de irlandeses y obligó a emigrar a otro millón, apareció en Irlanda literalmente de la noche a la mañana, como relata un viajero de la época:

El 27 de julio pasé de Cork a Dublín y los patatales florecían con todo el esplendor de una cosecha exitosa. Regresando el 3 de agosto, contemplé con pena un enorme desierto de vegetación putrefacta.

Como bien dice P. Waggonner, ninguna computadora y ningún modelo matemático podrían haber previsto este desastre.

A pesar de los ejemplos anteriores, no se puede concluir con una nota pesimista. La ecología de poblaciones aporta métodos de trabajo, conceptos y teorías útiles para enmarcar las observaciones, y en muchos casos también predicciones cualitativas a corto plazo. La complejidad de los problemas ecológicos impone algunas características especiales a la manera de aplicar los conocimientos. En contraste con las tecnologías industriales, una tecnología de la ecología de poblaciones:

1. Será ad hoc al sitio y al tiempo del problema. Muy difícilmente se podrán transportar "paquetes de tecnología ecológica" de una región a otra.

2. Debe de incluir programas de monitoreo in situ, a largo plazo, que permitan evaluar las modificaciones que vaya sufriendo el sistema ecológico del que se trata.

InicioAnteriorPrevioSiguiente