V. LAS GRANDES MASAS

Podemos considerarnos afortunados de vivir en una sociedad y en una época en que en realidad nos pagan por explorar el Universo.

.....H. STOMMEL

EN VENECIA hay un instituto de oceanología —u oceanografía, como prefieren algunos— con un nombre muy simpático: Istituto per lo Studio della Dinamica delle Grandi Masse; nombre donde la propiedad distintiva de los océanos es su gran masa, hecho indudable, por cierto. Sin embargo, pienso que es más importante destacar al efecto de Coriolis, ya que su presencia es lo que distingue fundamentalmente la dinámica de los océanos y las atmósferas planetarias de la mecánica de fluidos en escalas menores de la física de albercas y alambiques.

Poetas y físicos nos complacemos con situaciones como las de las figuras del capítulo anterior, que son estrictamente irrealizables; no sólo ayudan a entender un fenómeno, aislándolo, sino que también son bellas. Pero si el lector es un economista o un comerciante puede inquietarse y preguntar ¿para qué sirve todo esto? Para satisfacer un poco esta curiosidad voy a platicar un poco sobre la importancia del efecto de Coriolis en el océano (en la atmósfera de la Tierra o de otros planetas, se dan fenómenos similares).

No es común que se observen oscilaciones inerciales "puras" como las de la segunda figura del capítulo anterior, sin embargo, uno de los fenómenos más habituales en el océano es que el agua ejecute una oscilación en un círculo inercial superpuesta a la deriva producida por las grandes corrientes oceánicas. Es decir, una trayectoria similar a la de aquella figura, pero en escala mucho más pequeña y además donde la deriva no se da necesariamente hacia el occidente, sino hacia donde se dirige la corriente en ese lugar del océano. Este fenómeno se observa, sobre todo, luego de un cambio en el viento, en flotadores que siguen al agua superficial o subsuperficial o en los registros de corriente en un punto fijo. En este último caso, lo que se ve es una marcada acumulación de energía en la frecuencia inercial (correspondiente a un periodo de doce horas dividido por el seno de la latitud local). Estas oscilaciones horizontales de grandes masas de agua son lo más cercano que hay a la acción sola de la fuerza de Coriolis, pero más interesante es la situación donde esta fuerza actúa junto con la fuerza de presión, como paso a descubrir.

Los ciclones no sólo se producen en la atmósfera terrestre y la de otros planetas, sino que también son muy comunes en el océano. Un ciclón corresponde a una depresión de la superficie del mar aparentemente insignificante pero de dimensión horizontal considerable para lo que constituye nuestra experiencia diaria. Por ejemplo, un hundimiento máximo de diez centímetros en el centro, pero con un radio de cientos de kilómetros. La pendiente de la superficie del mar es pequeñísima, del orden de una diezmilésima de grado, pero por su gran extensión horizontal resulta fundamental para la dinámica oceánica. Tal hundimiento implica una fuerza de presión dirigida hacia el centro del ciclón; si el agua estuviera en reposo, este hueco sería rápidamente llenado en unos cuantos días. No es eso lo que se observa, por lo que hay que agregar más elementos.

Una posibilidad es que la fuerza de presión produzca una aceleración centrípeta que haga girar al agua alrededor de ese centro, tal y como gira la piedra de una honda gracias a la tensión de las correas. Esta hipótesis lleva a dos conclusiones que no corresponden en absoluto a lo observado: primera, el agua podría rotar en uno u otro sentido, al igual que la misma tensión en las cuerdas sirve para que la piedra de la honda gire en cualquier dirección. Segundo, la rapidez del agua sería del orden de un metro por segundo,16 [Nota 16] lo que es mucho mayor que las velocidades observadas.

Falta un elemento fundamental, la fuerza de Coriolis. Está equilibrada en gran parte a la de presión (lo que se llama balance geostrófico); la pequeña diferencia entre las fuerzas de Coriolis y la de presión es la que provoca la aceleración centrípeta del movimiento circular. Recuérdese que la dirección de la fuerza de Coriolis depende de la dirección de la velocidad: de hecho es tal que tiende a hacer girar un cuerpo hacia la derecha de la dirección de su movimiento en el hemisferio norte y hacia la izquierda en el hemisferio sur. Luego, para que (casi) exista un equilibrio entre las fuerzas de presión y de Coriolis, se necesita que el fluido en un ciclón gire en sentido antihorario u horario en los hemisferios norte y sur, respectivamente (véase las figuras siguientes).

[FNT 35]

Estructura vertical y horizontal de un ciclón (centro de baja presión).

[FNT 36]

Estructura vertical y horizontal de un anticiclón (centro de presión alta)

Un caso aún más interesante es el de un anticiclón, es decir, un remolino con la estructura de una colina —en vez de una depresión— en la superficie del mar, es decir, un centro de alta presión. En este caso, también muy frecuente en el océano, la fuerza de presión que apunta hacia afuera del centro, tendería a aplastar rápidamente la colina desparramándola en todas direcciones. No ocurre eso, sino que el remolino gira de manera tal que la fuerza de Coriolis casi equilibra a la de presión. (Más precisamente, aquella es un poquito más fuerte que ésta, mientras que para los ciclones debe ser un poquito más débil.) Para que se pueda producir este balance (parcial), el agua debe girar en el sentido horario si el remolino está en el hemisferio septentrional y, en el antihorario si está en el austral.

Si miran una carta meteorológica de esas que aparecen en los periódicos o la televisión, verán que la dirección del viento es alrededor de los centros de baja (B) y alta (A) presión y en el sentido que se muestra en las dos figuras anteriores. Que el sentido de giro esté determinado por la dirección de la fuerza de Coriolis indica la importancia fundamental de la rotación terrestre para estos fenómenos oceánicos y atmosféricos.

Es tal nuestra confianza en el balance geostrófico, que es más común medir la fuerza de presión, de ella inferir la de Coriolis —suponiendo, con toda justeza, que están prácticamente en equilibrio— y, finalmente, de esta última, calcular la velocidad que es proporcional en magnitud y perpendicular en dirección a la fuerza de Coriolis. Medir presión es más fácil que medir velocidades. Dados dos puntos a la misma profundidad, la presión en cada uno de ellos es esencialmente el peso de la columna de agua (y aire) que está por encima; por eso es que una elevación de la superficie del mar (con dimensiones horizontales lo suficientemente grandes) es un centro de alta presión y una depresión lo es de baja presión, es decir, los anticiclones y ciclones que he mencionado.

A lo largo de las costas de los mares del mundo existen estaciones mareográficas que miden la variación, con el paso del tiempo, del nivel del mar. El objetivo original de estas mediciones es determinar la marea, es decir, las oscilaciones periódicas de la superficie con periodos de aproximadamente medio día y un día. (Como está compuesta de partes realmente periódicas, que se repiten exactamente cada cierto tiempo fijo, sí es posible predecirla, del mismo modo que es posible predecir dentro de cuántas horas va a amanecer o va a haber un eclipse.) Si se promedian los datos de nivel del mar de todo un mes se eliminan las oscilaciones de la marea, del mismo modo que si se promedia un mes de datos de temperatura de algún lugar desaparece la oscilación correspondiente al día y la noche.

El promedio mensual del nivel del mar no es igual de un mes al otro, como tampoco lo son las temperaturas medias mensuales que reflejan la variación estacional de invierno, primavera, verano y otoño. Si se analizan los promedios mensuales de los datos de las estaciones mareográficas en el Golfo de California, se verá que, a fin de año, el nivel del mar es unos cinco centímetros más bajo en la costa continental que en la península de Baja California; lo opuesto ocurre seis meses más tarde (véase figura). Esto significa que hay una fuerza de presión que empuja el agua de la superficie hacia el continente hacia fin de año, para ir cambiando suavemente hacia la situación contraria seis meses más tarde y luego regresar a la original en seis meses más.

[FNT 37]

Variación anual del nivel del mar y corriente superficial

Si la Tierra no rotara, este desnivel mandaría el agua de una costa a la otra. No es eso lo que ocurre, el agua superficial se mueve fundamentalmente a lo largo del Golfo, saliendo entre octubre y marzo (cuando la fuerza de presión la empuja hacia el continente) y entrando el resto del año (cuando esa fuerza presiona hacia la península); de esta forma la fuerza de Coriolis está en equilibrio con la de presión, al igual que ocurre en los ciclones y anticiclones anteriormente descritos. Ambas fases están sombreadas con puntos y rayas inclinadas en la figura. Nótese que el nivel promedio entre ambas costas (no el desnivel) aumenta cuando entra agua el Golfo y disminuye cuando sale, lo que tiene sentido.

La máxima velocidad de entrada y salida, calculada a partir del máximo desnivel, es de unos cinco centímetros por segundo. Puede parecer un poco absurdo preocuparse de velocidades tan pequeñas y de elevaciones del nivel del mar de tan sólo decímetros; después de todo el oleaje y la marea son responsables de cambios mucho más grandes en la superficie del mar. Sin embargo, esta comparación no es válida porque los cambios del nivel del mar a que me refiero ocurren en una escala temporal, la anual, mucho más grande que la del oleaje, y la dinámica asociada a este fenómeno es bien diferente, como paso a explicar.

Mencionaba que la presión en un punto se puede calcular, con cierta facilidad, midiendo el peso de toda el agua que hay por encima de él. Lo que importa es esta diferencia de presión entre dos puntos a la misma profundidad; esta diferencia representa la fuerza horizontal en esa parte del océano. Hasta el momento me he referido a las diferencias de presión en dos puntos cercanos a la superficie debidas a la inclinación de ésta. Para calcular diferencias de presión a mayor profundidad, se debe tomar en cuenta los cambios de peso del agua de mar con la temperatura: cuanto más caliente es menor la densidad, o sea el peso por unidad de volumen.17[Nota 17] Lo que se encuentra es sorprendente: bajo el lugar donde la superficie del mar se halla elevada, el agua está más caliente, y más fría debajo de donde se hunde la superficie. En otras palabras, el agua es, en promedio, más liviana donde se eleva la superficie del mar, o más pesada donde está hundida.

Consecuencia de lo anterior es que la diferencia de presión entre dos puntos disminuye con la profundidad, llegando incluso a cambiar de signo; esto significa —de acuerdo al balance geostrófico— que a fin de año, cuando el agua cercana a la superficie está saliendo del Golfo de California, el agua más profunda está de hecho entrando a él y viceversa seis meses después. La cantidad de agua que entra y sale prácticamente se compensan, por eso es que el nivel del mar no varía tanto, pero en lo que no hay compensación sino un flujo neto muy importante es con el calor: en otoño e invierno el agua que sale es la superficial, la cual está más caliente que la que entra, la profunda; por lo tanto se produce una pérdida neta de calor del Golfo, el cual se enfría.18[Nota 18] Lo contrario ocurre en primavera y verano, cuando el sentido de la corriente superficial y profunda se revierte. ¿Qué tan grandes son la ganancia y la pérdida de calor en el Golfo de California? Los valores máximos son del orden de decenas de billones de watts, lo que es unas mil veces mayor que el consumo de electricidad en todo México. La señal escondida en esos centímetros de variación de nivel del mar es por cierto muy importante; he aquí una "punta de témpano", sólo que de calor y no de hielo. Dada la dificultad de medir corrientes durante intervalos de tiempo tan grandes, no podríamos haber llegado a estas conclusiones con sólo los datos de elevación de la superficie y los cambios de temperatura, si no fuera por nuestra confianza en el balance geostrófico, donde la fuerza de Coriolis desempeña papel fundamental.

[FNT 38]

A diferencia de las oscilaciones inerciales, en los ejemplos de los remolinos y de la circulación anual en el Golfo de California la fuerza de Coriolis no actúa sola sino que está en equilibrio con la fuerza de presión. Un último ejemplo importante en el campo de la dinámica oceánica es el de la acción simultánea entre la fuerza de Coriolis y el esfuerzo del viento. No es difícil entender que el viento empuja el agua en la dirección en que sopla. ¿Cómo responde ésta? En principio, aparecen oscilaciones inerciales, pero luego de cierto tiempo lo que queda es una circulación donde el esfuerzo del viento está prácticamente en equilibrio con la fuerza de Coriolis. Esto significa que el agua se mueve en dirección diferente a la del viento: casi perpendicular a éste y hacia la derecha en el hemisferio norte, o hacia la izquierda en el austral.

Por ejemplo, los vientos preponderantes en el Atlántico norte o el Pacífico norte soplan desde el Oeste, por lo que el agua fluye lentamente hacia el Sur, para regresar mucho más rápidamente en la costa occidental en la forma de una corriente angosta: la del Golfo, en el caso del Atlántico, y la de Kuroshio, en el caso del Pacífico. Por otra parte, en la zona tropical los vientos preponderantes —los alisios— soplan desde el Este, jalando agua a cada lado del ecuador hacia el polo correspondiente; como este agua debe venir de alguna parte, en una franja angosta centrada en el ecuador hay un afloramiento de aguas profundas (parte del agua que se desparrama hacia las latitudes superiores, sin embargo, viene del Este).

El mismo fenómeno de afloramiento es experimentado cuando el viento sopla a lo largo de la costa oceánica, en la dirección adecuada. Efectivamente, si mirando hacia donde sopla el viento, la costa queda a la izquierda, en el hemisferio septentrional (o a la derecha en el austral), entonces el efecto combinado del viento y la fuerza de Coriolis forma un flujo de agua superficial mar adentro, que, cerca de la costa, produce un afloramiento de aguas profundas. En cambio, si el viento sopla en la dirección contraria, entonces se produce el hundimiento del agua superficial. En el primer caso, cuando hay un afloramiento de aguas profundas, ocurre no sólo un cambio físico importante, pues estas aguas están frías, sino también químico y biológico, pues las aguas profundas son ricas en nutrientes. A este fenómeno de afloramiento, el cual es parcialmente causado por el efecto de Coriolis, se debe, por ejemplo, la notable riqueza pesquera de lugares como, por ejemplo, Perú.

Ya que el efecto horizontal de Coriolis es real —no aparente— y además importante para la física y biología de los océanos, ¿cuál es su causa? En las siguientes secciones veremos que la existencia de este curioso fenómeno está ligada a ñla forma de la Tierra!

[Inicio][Anterior]Previo[Siguiente]