VIII. CONSECUENCIAS DE LA INFLACIÓN

LA SOPA DE CUARKS

DESPUÉS de la inflación ya no había partículas X en libertad, pues éstas se habían transfomado en leptones y cuarks. El Universo era una sopa homogénea de cuarks, gluones, leptones, partículas W y Z, y fotones, todos chocando entre si a enormes velocidades transformándose continuamente unas en otras. En esas épocas remotas, cuando la temperatura todavía estaba por arriba de unos 1016 grados Kelvin, las interacciones electromagnéticas y débiles aún no se separaban. Pero a 10-15 grados Kelvin el campo de Higgs asociado a las partículas W y Z transmitió su energía y estas partículas adquirieron masa. En ese momento, las interacciones electro-magnéticas se separaron para siempre de las débiles. Eso ocurrió a los 10-12 segundos y correspondió también a un cambio de fase tal como en la inflación. Pero la liberación de energía fue muchísimo menos espectacular y no tuvo una influencia tan drástica en la evolución del Universo.

Después de unos 10-8 segundos la temperatura del Universo había bajado a 1013 grados y los cuarks se unieron entre sí para formar los primeros bariones y antibariones, que eran principalmente protones, neutrones y sus antipartículas. En esa época el Universo era una sopa de partículas elementales, principalmente fotones, así como protones, electrones muones, tauones, neutrinos y sus respectivas antipartículas.

A medida que descendía la temperatura la antimateria iba desapareciendo. Al formarse los protones y neutrones la temperatura había bajado lo suficiente para que estas partículas se aniquilaran con sus correspondientes antipartículas (como vimos en el capítulo I, los protones y los antiprotones pueden coexistir a temperaturas superiores a los 1013 grados Kelvin, creándose y aniquilándose continuamente con los fotones). Así, en algún momento que podemos situar en unas 100 millonésimas de segundo después de la Gran Explosión, todos los antiprotones se aniquilaron con los protones que encontraron, produciendo una enorme cantidad de luz —o fotones. Afortunadamente había un ligerísimo exceso de protones sobre antiprotones, como consecuencia probable de la asimetría CP que propició la creación de más cuarks que anticuarks. También se aniquilaron los tauones con sus antitauonues, y poco después les tocó su turno a los muones y antimuones. Un décimo de segundo después de la Gran Explosión quedaron como constituyentes principales del Universo: protones, neutrones, electrones y positrones, neutrinos y antineutrinos (de las tres especies), y fotones.

Un segundo después de la Gran Explosión, la temperatura había bajado a unos 5 000 000 000 de grados Kelvin. Por debajo de esa temperatura tampoco es posible que coexistan positrones con electrones. Así, cuando la edad del Universo era de un segundo, todos los positrones se aniquilaron con los electrones produciendo más luz. Después ya no hubo antimateria. Pero si quedó un pequeño excedente de materia, gracias a la ligera asimetría entre materia y antimateria, que mencionamos más arriba. Todo lo que vemos en el Universo en la actualidad incluyendo nosotros mismos, está hecho de ese excedente. Se calcula que por cada partícula de materia que sobrevivió hasta ahora se tuvieron que aniquilar unos 100 000 000 de partículas y antipartículas. Eso sucedió antes de un segundo de existencia. Después, los constituyentes principales del Universo fueron: protones, neutrones, electrones, neutrinos, antineutrinos y fotones.

FORMACIÓN DEL HELIO PRIMORDIAL

Los protones pueden transformarse en neutrones con la intermediación de los neutrinos (la reacción más común es protón + antineutrino ® neutrón + positrón). Gracias a la abundancia de neutrinos y antineutrinos en esas épocas remotas del Universo los protones se transformaban en neutrones, los cuales se volvían a transformar en protones después de cierto tiempo.

Por otra parte, los protones y neutrones chocaban entre sí y, ocasionalmente podían quedar "pegadas", para así formar un núcleo de deuterio, también conocido como hidrógeno pesado. El núcleo de deuterio que consta de un protón y un neutrón puede a su vez, chocar con otros protones y neutrones y formar después de varias reacciones nucleares, núcleos de helio. Lo crucial de este proceso es que ocurre a una temperatura de unos 100 000 000 grados Kelvin. Por arriba de esa temperatura los protones y neutrones tienen demasiada energía y destruyen, al chocar, los núcleos de deuterio y helio que hayan podido formarse. A temperaturas menores los núcleos de deuterio, que tienen carga eléctrica positiva, no poseen suficiente energía para vencer su repulsión eléctrica por lo que le es imposible unirse y formar núcleos más pesados.

Y a los tres minutos de existencia del Universo, la temperatura era justamente de 100 000 000 grados Kelvin.

Los núcleos atómicos que lograron formarse a los tres minutos de existencia del Universo no volvieron a destruirse y fijaron, por lo tanto, la composición química posterior del Universo quedó compuesta de aproximadamente de 75 % de hidrógeno, 25 % de helio y apenas una traza de otros elementos. Esa era la composición química del Universo en aquellas épocas remotas, muchísimo antes de que nacieran las primeras estrellas. Los otros elementos químicos fueron fabricados en el interior de las estrellas y diseminados posteriormente por el espacio cósmico.

La abundancia del helio primordial se ha calculado a partir de observaciones astronómicas y el resultado concuerda muy bien con las predicciones teóricas: ésta es una de las pruebas más sólidas a favor de la Teoría de la Gran Explosión.

FORMACIÓN DE ÁTOMOS Y LA RADIACIÓN DE FONDO

Tres minutos después la Gran Explosión del Universo contenía principalmente núcleos de hidrógeno (sencillos protones ), núcleos de helio, electrones, neutrinos, antineutrinos y fotones. Los neutrinos y antineutrinos dejaron por esas épocas de interactuar con las demás partículas, pues ya no poseían suficiente energía. Las otras partículas formaban lo que se llama gas ionizado (véase el capítulo1), un gas en el que los electrones andan sueltos y no están amarrados a los núcleos atómicos. Como ya explicamos anteriormente esa época del Universo corresponde al fuego primordial.

Esa era la condición física del Universo tres minutos después de la Gran Explosión, y así siguió durante varios cientos de miles de años más sin que volviera a suceder algo excepcional, salvo que la temperatura bajaba progresivamente a medida que el Universo proseguía con su expansión.

Unos 500 000 años después de la Gran Explosión algo decisivo volvió a ocurrir. La temperatura había bajado a unos 5 000 grados Kelvin y fue entonces cuando los electrones, que andaban libres, pudieron combinarse por primera vez con los núcleos atómicos y formar los primeros átomos en la historia del Universo. La materia dejó de ser un gas ionizado, y como no quedaban electrones libres, los fotones dejaron de interactuar con la materia. A partir de ese momento el fuego primordial se apagó y el Universo se volvió transparente. La luz se desacopló de la materia y siguió su evolución por separado.

Ahora, unos 15 000 000 000 de años después de la Gran Explosión los fotones que quedaron libres luego de la formación de los primeros átomos deben estar presentes todavía, llenando todo el espacio cósmico. Esos fotones fueron emitidos por la materia a una temperatura de 5 000° K. Un gas a esa temperatura irradia principalmente luz visible e infrarroja. Pero, como el Universo está en expansión, esa luz sufrió un corrimiento Doppler y ha perdido una buena parte de su energía antes de llegar a nosotros. Esa luz se observa hoy en día ya no como luz visible sino como ondas de radio: es la radiación de fondo.

FORMACIÓN DE GALAXIAS

A pesar de los descubrimientos tan importantes de los últimos años y los avances teóricos en cosmología y astrofísica uno de los problemas más fundamentales que no se ha resuelto es el de la formación de las galaxias.

La teoría más aceptada en la actualidad es que, las galaxias se formaron por la contracción gravitacional de regiones del Universo que estaban más densas que el promedio. Para entender esta idea imaginemos al Universo en algún momento temprano de su historia. La materia estaba distribuida de manera homogénea, aunque algunas regiones pudieron estar ligeramente más densas que el promedio, y otras ligeramente menos densas. Las regiones más densas serían como grumos en el Universo primordial estos grumos por tener más masa, se contraen debido a su propia fuerza gravitacional. Una vez que esta contracción empieza no hay modo de que se detenga, y se formará, finalmente, una gran condensación de materia ¡es decir una galaxia! Esta es, a grandes rasgos, la hipótesis más aceptada de la formación de galaxia sin embargo hay dos problemas fundamentales: ¿cuándo empezaron a formarse estos grumos?, y ¿qué tan rápido se contrae la materia por su fuerza gravitacional?

El proceso de la formación de galaxias tiene similitudes con la formación de estrellas. Se piensa que las estrellas se forman a partir de gigantescas nubes de gas que se encuentran en las galaxias. El gas se encuentra relativamente caliente y ejerce, por lo tanto, una presión que tiende a dilatarlo; por otra parte, la propia atracción gravitacional del gas tiende a contraerlo. Si la distribución del gas fuera perfectamente homogénea, la presión y la gravedad mantendrían el equilibrio por tiempo indefinido. Pero, una parte de la nube puede ser ligeramente más densa que otra y romper, así, el delicado equilibrio entre presión y gravedad. Esto sucede si la masa de un pedazo de nube se excede de cierto valor crítico, de tal modo que la fuerza gravitacional domina definitivamente y el pedazo empieza a contraerse. Y no importa que tan pequeña haya sido la perturbación inicial de la densidad pues la contracción procederá inevitablemente.

En principio, un proceso similar pudo coincidir a la formación de una galaxia. La mayoría de los astrofísicos piensan que las galaxias se formaron porque la materia cósmica, en los primeros instantes del Universo, no era perfectamente homogénea sino que había grumos de materia. Estos grumos empezaron a contraerse por su propia gravedad y dieron lugar a condensaciones gaseosas, a partir de las cuales se formaron posteriormente las estrellas.

Sin embargo, la expansión del Universo retarda seriamente la contracción gravitacional. Los cálculos indican que si una in homogeneidad se formó un segundo después de la Gran Explosión, en la actualidad no se habría transformado todavía en algo parecido a una galaxia. Si uno quiere explicar la formación de las galaxias con el mecanismo descrito tiene que fijar el inicio de la contracción a épocas mucho más remotas.

Aquí es donde surge una vez más el problema del horizonte. Imaginemos una cierta región del espacio que, al contraerse, dio origen a nuestra galaxia. Esa región en la actualidad podría ser, digamos, l00 veces más grande que nuestra galaxia. Ahora vayamos hacia atrás en el tiempo: en algún momento en el pasado, de acuerdo con la figura 13, la región que se colapsó era tan grande como el horizonte de esa época. Y si uno se va aún más atrás en el tiempo resulta que la materia que posteriormente formó nuestra galaxia estaba distribuida en una región muchísimo más grande que el horizonte. Por lo tanto, no pudo haber interacción entre sus partes para iniciar la contracción gravitacional.

Este era un problema básico de la cosmología hasta que apareció la idea de la inflación. Si analizamos la figura 14 vemos que el problema desaparece, ya que tenemos la situación descrita más detalladamente en la figura 15. Podemos tener un grumo inicial en el Universo antes de la inflación, quizás justo en el tiempo de Planck. Ese grumo está contenido dentro de su horizonte en esa época. Después sobreviene la inflación. El horizonte permanece constante. El grumo deja de contraerse y se expande de manera violenta con todo el resto de la materia en el Universo; a partir de algún momento es más grande que el horizonte. Cuando termina la inflación el grumo sigue expandiéndose con el Universo, pero ahora también el horizonte crece y lo alcanza. A partir de ese momento el grumo está de nuevo dentro del horizonte y reanuda su contracción por su propia fuerza gravitacional para transformarse finalmente en algo parecido a una galaxia.

 

 

Figura 15. Esquema de la formación de una galaxia a partir de una fluctuación cuántica.

En principio es perfectamente posible que las galaxias, o más bien las pequeñas fluctuaciones de densidad que después dieron origen a ellas, aparecieran durante el tiempo de Planck. En esa época tan remota el mismo espacio-tiempo estaba en plena turbulencia y, tal como un gas turbulento en el que algunas regiones son más densas que otras, había fluctuaciones cuánticas del vacío que pudieron ser la semilla de las galaxias. ¡Una fluctuación cuántica que origina algo tan grande como una galaxia!

Este es, a grandes rasgos, el escenario para la formación de galaxias de acuerdo con el modelo de la inflación. Lo interesante es que lleva a predicciones teóricas muy concretas. En el escenario de la inflación los cálculos predicen correctamente las propiedades estadísticas de las fluctuaciones tal como debieron ser para reproducir las condiciones actuales (por estadística nos estamos refiriendo a cuántos grumos se formaron con un tamaño dado). En lo que falla el modelo es en el tamaño de las fluctuaciones propuestas. Todos los cálculos indican que las fluctuaciones habrían sido tan intensas que, en lugar de formar galaxias, formarían condensaciones muchísimo más densas, como hoyos negros. La única manera de evitar tal catástrofe sería ajustar de manera extremadamente fina y ad hoc los parámetros del campo que debió existir antes de la inflación. Ésta es probablemente la principal falla del modelo inflacionario; los partidarios de este modelo piensan que con el tiempo se podrá corregir este defecto con un modelo más apropiado, lo cual todavía está por verse...

Otra posibilidad, aún sin explorar; es que efectivamente se hayan formado hoyos negros en un principio y que luego estos hayan propiciado la formación de galaxias a su alrededor debido a la fuerza gravitacional que ejercían sobre la materia en sus entornos. Después de todo, hay evidencias de que hoyos negros gigantescos se encuentran en los núcleos de muchas galaxias.25[Nota 25]

Independientemente de todo lo anterior la hipótesis de que las galaxias se hayan formado por la contracción gravitacional de la materia cósmica se enfrenta a un problema muy serio. La radiación de fondo, que fue emitida cuando se apagó el fuego primordial, es extremadamente homogénea y sólo muestra irregularidades espaciales del orden de una parte en 10 000. Si tales irregularidades corresponden a los grumos que dieron origen a las galaxias, los cálculos indican que definitivamente no tuvieron tiempo suficiente para contraerse. La única salida consiste en proponer que existe masa invisible en forma de partículas fantasmas, tal como explicamos en el capítulo anterior. Las galaxias, entonces, empezarían a formarse por la contracción gravitacional de grumos de materia fantasma, que sólo interactúa gravitacionalmente. Estos grumos podrían estar bastante condensados cuando se liberó la radiación de fondo, pero no tuvieron absolutamente ninguna influencia en ella porque no interactúan con la luz. Posteriormente esas grande condensaciones invisibles e impalpables atraerían la materia común con la que se formarían las galaxias con sus estrellas.

Este es, de modo general, un posible mecanismo para la formación de galaxias. Los cálculos de los cosmólogos muestran que el proceso funciona razonablemente bien si las partículas fantasmas tienen masas del orden de la masa del protón.

A pesar de algunas fallas serias y de que no explica todo lo que uno quisiera que se explicara, el modelo del Universo inflacionario es lo suficientemente interesante y complejo para confiar en que con algún ingrediente desconocido hasta ahora, se llegue a un escenario más plausible para la Gran Explosión, la creación de la materia y la estructura del Universo tal como las observamos en la actualidad.

InicioAnteriorPrevioSiguiente