I. SISTEMA ÓSEO

ES COMÚN pensar en los huesos como una parte inerte del cuerpo y que una vez que alcanza su tamaño adulto, éstos ya no cambian. La realidad es otra: el hueso es un tejido vivo que, al igual que los otros tejidos del cuerpo, debe alimentarse para estar en buenas condiciones, de lo cual se encargan los osteocitos, que son células óseas distribuidas en el tejido óseo.

Por ser el hueso un tejido vivo, cambia en el tiempo. Al proceso continuo de destruir el tejido viejo y crear el nuevo se le llama remodelación. La remodelación ósea es llevada a cabo por los osteoclastos, que son las células encargadas de la destrucción del tejido viejo y los osteoblastos, que construyen el nuevo. La remodelación ósea es un trabajo muy lento, de forma tal que tenemos el equivalente de un nuevo esqueleto cada siete años aproximadamente.

Mientras el cuerpo es joven y crece, la principal actividad la tienen los osteoblastos, mientras que después de los cuarenta años los osteoclastos son los más activos; esto explica por qué las personas se achican a medida que envejecen. Estos procesos son graduales y lentos, excepto en los primeros años de vida en los que el crecimiento es muy rápido y después de los ochenta años en los que las personas decrecen rápidamente.


Figura 1. Se muestra el fémur y un corte transveral de la cabeza donde el tejido óseo es esponjoso, en el centro del fémur el tejido es compacto, así como en la superficie.

Los principales constituyentes del hueso son: H(3.4%), C(15.5%), N(4.0%), 0(44.0%), Mg(0.2%), P(10.2%), S(0.3%), Ca(22.2%) y otros (0.2%), que componen tanto el llamado colágeno óseo como el mineral óseo. El colágeno óseo es menos denso que el mineral óseo, desempeña el papel de pegamento del mineral óseo y es el que proporciona la elasticidad de los huesos. El mineral óseo parece estar formado de hidroxiapatita de calcio: Ca10(PO4)6(OH)2en cristales cilíndricos con diámetros de 20 a 70 y longitudes de 50 a . Cuando el colágeno es removido del hueso, éste es tan frágil que se rompe con los dedos.

Si se corta por la mitad un hueso, puede verse que el tejido óseo se presenta en dos tipos diferentes: sólido o compacto y esponjoso o trabecular, como se ilustra en la figura 1.

El tejido esponjoso y el compacto no se diferencian en su constitución: químicamente son iguales; sólo se diferencian en su densidad volumétrica, es decir, una masa dada de tejido óseo esponjoso ocupa un mayor volumen que la misma masa formando tejido óseo compacto.

El tejido compacto se encuentra principalmente en la parte superficial de los huesos así como en la caña central de los huesos largos, mientras que el esponjoso se encuentra en los extremos de los huesos largos.

En el cuerpo humano, los huesos tienen seis funciones que cumplir y para las cuales están diseñados óptimamente; éstas son: soporte, locomoción, protección de órganos, almacén de componentes químicos, alimentación y trasmisión del sonido.

La función de soporte es muy obvia en las piernas: los músculos se ligan a los huesos por tendones y ligamentos y el sistema de huesos y músculos soporta el cuerpo entero. La estructura de soporte puede verse afectada con la edad y la presencia de ciertas enfermedades.

Figura 2. Esqueleto humano. Se puede ver que debido a las uniones de los huesos, éstos permiten además del soporte, la locomoción. El cráneo protege al cerebro, las costillas a los pulmones, la columna vertebral a la médula espinal.

Debido a que los huesos forman un soporte constituido por uniones de secciones rígidas, como se ve en la figura 2, puede llevarse a cabo la locomoción; si se tratara de una sola pieza rígida no habría posibilidad de movimiento. Es por esto que las articulaciones entre los huesos desempeñan un papel muy importante.

Las partes delicadas del cuerpo, como son el cerebro, la médula espinal, el corazón y los pulmones, deben ser protegidas de golpes que las puedan dañar; los huesos que constituyen el cráneo, la columna vertebral y las costillas cumplen esta función, como se observa en la figura 2.

Los huesos son el almacén para una gran cantidad de productos químicos necesarios en la alimentación del cuerpo humano.

Los dientes son huesos especializados que sirven para cortar (incisivos), rasgar (caninos) y moler (molares) los alimentos que ingerimos para suministrar al cuerpo los elementos necesarios.

Los huesos más pequeños del cuerpo humano son los que forman el oído medio, conocidos como martillo, yunque y estribo, y que transmiten el sonido convirtiendo las vibraciones del aire en vibraciones del líquido de la cóclea; estos son los únicos huesos del cuerpo que mantienen su tamaño desde el nacimiento.

Las vigas que forman la parte medular de un edificio son sometidas a pruebas mecánicas que determinan su resistencia ante las fuerzas a las que pueden estar sujetas, que se reducen a las de tensión, compresión y torsión. Estas mismas pruebas se utilizan para obtener la resistencia de los huesos, la cual no sólo depende del material con el que están constituidos sino de la forma que tienen. Para efectuar las pruebas de resistencia mecánica se usa una muestra de material en forma de I a la que se aplica la fuerza, como se muestra en la figura 3, durante un tiempo determinado, y luego se analiza la muestra para ver los efectos causados. Se ha encontrado que cuando la fuerza se aplica en una dirección arbitraria, con un cilindro hueco se obtiene el máximo esfuerzo ocupando una mínima cantidad de material y es casi tan fuerte como un cilindro sólido del mismo material. Si hablamos en particular del fémur, como las fuerzas que soporta pueden llegar en cualquier dirección, la forma de cilindro hueco en la cabeza y sólido en el centro del hueso es la más efectiva para soportarlas.

Para ilustrar lo dicho, haga una prueba: tome un popote y aplique una fuerza de compresión en los extremos, el popote se doblará cerca del centro y no en los extremos. Si ahora lo rellena en la parte central en forma compacta, la fuerza necesaria para doblarlo deberá ser mucho mayor.


Figura 3. Las pruebas de resistencia mecánica a las que se someten los huesos son las de tensión, compresión y torsión que se ilustran aquí. En la cabeza del fémur se forman líneas de tensión y de compresión debido al peso qué soporta.

Además, el diseño trabecular en los extremos del hueso no es azaroso: está optimizado para las fuerzas a las que se somete el hueso. En la figura 3 se muestran las líneas de fuerza de tensión y compresión en la cabeza y el cuello del fémur debidas al peso que soporta.

El hueso está compuesto de pequeños cristales minerales de hueso duro atados a una matriz de colágeno flexible. Estos componentes tienen propiedades mecánicas diferentes, sin embargo, la combinación produce un material fuerte como el granito en compresión y 25 veces más fuerte que el granito bajo tensión.

CUADRO 1. Fortaleza del hueso y otros materiales comunes

Como puede observarse del cuadro 1, es difícil que un hueso se rompa por una fuerza de compresión, en general se rompe por una fuerza combinada de torsión y compresión, pero con el siguiente ejemplo es fácil ver que el diseño del cuerpo humano con dificultad puede ser superado:

Si una persona brinca o cae de una altura y aterriza sobre sus pies, hace un gran esfuerzo sobre los huesos largos de sus piernas. El hueso más vulnerable es la tibia y el esfuerzo sobre este hueso es mayor en el punto donde el área transversal es mínima: precisamente sobre el tobillo. La tibia se fractura si una fuerza de compresión de más de 50 000 N se aplica. Si la persona aterriza sobre ambos pies la fuerza máxima que puede tolerar es 2 veces este valor, es decir, 100 000 N, que corresponde a 130 veces el peso de una persona de 75 kg de peso.

La fuerza ejercida sobre los huesos de las piernas es igual a la masa del sujeto multiplicada por la aceleración: F = ma

Si la persona cae de una altura H, partiendo del reposo, alcanza al tocar el suelo una velocidad de:

De la mecánica, sabemos que la aceleración promedio a necesaria para parar un objeto que se mueve con una velocidad v en una distancia h es:

sustituyendo el valor de se obtiene:


Graphics

de modo que la fuerza que se ejerce para que la persona se detenga en el suelo es:


Graphics

w es el peso de la persona

Graphics es la razón de la altura desde la cual cae la persona y la distancia en la que se detiene.

Si la persona que cae no dobla sus tobillos ni sus rodillas, h será del orden de 1 cm. Si F no es mayor que 130 w (130 veces su peso), la altura máxima de caída será:


Graphics

de modo que si cae de una altura de 1.3 m sin doblarse puede resultar fractura de la tibia.

Si se doblan las rodillas durante el aterrizaje, la distancia h en la que se desacelera el cuerpo alcanzando una aceleración cero puede aumentar 60 veces, de manera que la altura desde la que se puede efectuar el salto es H = 60 X 1.3 m = 78 m; en este caso la fuerza de desaceleración se ejerce casi enteramente por los tendones y ligamentos en vez de los huesos largos, estos músculos son capaces de resistir sólo aproximadamente 1/20 de la fuerza necesaria para la fractura de los huesos, de modo que la altura de H = 4 m es la máxima segura, siempre y cuando se doblen las rodillas y tobillos.

Los huesos son menos fuertes bajo tensión que bajo compresión: una fuerza de tensión de 120 N/mm² puede causar la rotura de un hueso, asi como puede causarla una fuerza de torsión, y estas roturas son diferentes.

Cuando un cuerpo se fractura, puede repararse rápidamente si la región fracturada se inmoviliza. Un largo periodo de confinamiento en cama en general es debilitador para el paciente, por lo que es importante que éste se ponga en movimiento tan pronto como sea posible.

No se conoce con detalle el proceso de crecimiento y reparación de huesos, sin embargo, existe evidencia de que campos eléctricos locales desempeñan un papel importante. Cuando el hueso es esforzado se genera una carga eléctrica en su superficie. Experimentos con fracturas óseas de animales muestran que se reparan más rápido si se aplica un potencial eléctrico a través de la fractura, este proceso usado en humanos ha tenido éxito.

En algunos casos, es necesario usar clavos, alambres y prótesis metálicas más complicadas ya sea para unir huesos o para sustituirlos.

ÍndiceAnteriorPrevioSiguiente