I. CONCEPTOS GENERALES
T
ODOS
los seres vivos mantienen con el medio ambiente un desequilibrio que los aleja de la muerte. Sólo al morir se destruyen las barreras que separan unos compartimentos de otros, la estructura de órganos, tejidos, células, etc.; y sólo con la muerte se detiene también la actividad extraordinaria de las estructuras todas, desde aquellas que podemos ver, hasta las que pertenecen al mundo microscópico, o submicroscópico inclusive, de las moléculas que participan en el complejo caminar de los sistemas biológicos. ¿Cómo es que se mantiene este orden que representa la vida? Hay, en primer lugar, una complicadísima serie de instrucciones y mecanismos gracias a los cuales todos los organismos vivos cuentan con la información, no sólo para mantenerla, sino para perpetuarla, transmitiéndola a su descendencia. Esa información, a su vez, debe transformarse primero en la realidad de numerosas moléculas y estructuras que son los ejecutores, o los objetos de tales instrucciones.Como cualquier proceso natural, el fenómeno de la vida, para mantenerse, requiere una gran cantidad de energía; esto es obvio en el caso de algunos de los procesos vitales como el movimiento; sin embargo, el gasto de energía no nos parece tan claro cuando pensamos, por ejemplo, en la digestión o en el pensamiento mismo. Otro de los asuntos que no es claro para el común de las personas, es de dónde viene la energía; cómo es que los alimentos la contienen y cómo la aprovechamos; cómo es que en un principio viene del Sol y nosotros la aprovechamos, y aunque muchos sabemos que son las plantas las encargadas de esto, en general se ignora que hay enormes cantidades de algas, muchas de ellas microscópicas, y bacterias que también pueden capturar la energía del Sol; menos aún se conocen los mecanismos mediante los cuales la energía es capturada por los seres vivos y todavía menos, qué alcances tiene todo esto.
Luego existe el hecho de que los animales, incluyendo al hombre, pueden tomar indirectamente la energía del Sol al ingerir ciertas sustancias que las plantas han acumulado, o a las plantas mismas. De nueva cuenta, al parecer son sólo los especialistas quienes pueden conocer los mecanismos implicados en el aprovechamiento de esta energía necesaria para mantenernos vivos y realizar todas nuestras complicadas funciones.
En suma, toda función implica energía, pero hay numerosos hechos acerca de ella que desconocemos. El conocimiento de todos los procesos que intervienen en las transformaciones de la energía en nuestro organismo, o en general, en los organismos de los seres vivos, es uno de los capítulos más apasionantes de la biología, sobre todo porque en los últimos años se ha podido aclarar buena parte de sus mecanismos.
Es frecuente oír hablar de la necesidad de ingerir alimentos para tener "más fuerzas", "mas energía" , "potencia", etc. También se habla de que una persona es muy "fuerte", o de que tiene mucha "energía", pero estos términos habitualmente son vagos, y se les utiliza más como sinónimos de actividad que en su verdadera acepción. Si en este pequeño libro hemos de hablar de los procesos que permiten a los seres vivos obtener la energía de los alimentos o del Sol, y de los sistemas que luego la utilizan para diferentes fines, es importante que definamos primero algunos términos; de esa forma será más fácil entendernos en el curso de las páginas de este libro.
La fuerza. Tal vez la definición más simple que hay es la más antigua, la cual nos dice que es aquello capaz de modificar el estado de reposo o de movimiento de un cuerpo. Ésta puede ser desde la desarrollada por una mesa que sostiene pasivamente un cuerpo, como una máquina de escribir o un cuaderno, hasta la representada por el empuje de un tractor, o la de un músculo que mueve a la vez un hueso, a manera de palanca, para desplazar o levantar un cuerpo.
El trabajo y la energía. Éstos son dos términos equivalentes. El trabajo resulta de aplicar una fuerza sobre un cuerpo y de producir su movimiento a lo largo de un espacio cualquiera, se cuantifica tomando en cuenta la magnitud de la fuerza y el espacio recorrido. La energía es la capacidad, aunque no se haya ejercido, de hacer trabajo; por ejemplo, un coche en movimiento lleva una cantidad de energía que le permite, si se encuentra con algún objeto, moverlo en cierta forma, según la velocidad y la masa o peso que tenga. Ese mismo coche, si yendo a cierta velocidad se topa con un objeto en su camino, realiza trabajo, el cual se puede cuantificar de manera precisa. Hay también energía en un litro de gasolina que al quemarse puede producir el movimiento de un motor, el cual, conectado a las ruedas de un coche, es capaz de desplazar una carga. La energía eléctrica es también del conocimiento común, y resulta aún más clara. Todos sabemos que llega por los cables de la corriente, y que cuando se la utiliza puede realizar trabajo, como el del motor de una lavadora, de una sierra, etc. A lo largo de este pequeño libro veremos que hay muchas otras formas de energía, algunas de las cuales probablemente resulten novedosas para el lector.
La potencia. La potencia de una máquina, por ejemplo, es la capacidad que tiene ésta de realizar cierto trabajo, pero en relación con otra dimensión: el tiempo. Así, un coche que es capaz de subir una cuesta en cinco minutos es mucho más potente que otro que tarda 10 o 15 minutos. Si suponemos que ambos pueden básicamente pesar lo mismo (tienen la misma masa), el trabajo para llevarlos a la parte más elevada de una cuesta es el mismo; sin embargo, la potencia de aquel que tardó cinco minutos es tres veces mayor que la del que tardó 15.
Finalmente, si los conceptos fuerza, trabajo-energía y potencia son diferentes, hay también diferencias en las unidades en que se expresan. Nosotros utilizaremos las unidades de energía-trabajo, las cuales, aunque pueden ser muy diversas, se expresan más comúnmente en el Joule y la caloría. La última representa la cantidad de calor que se requiere para elevar en un grado la temperatura de un gramo de agua. La primera es igual a poco más de cuatro calorías, y fue así denominada en honor al gran científico James Joule, quien realizó un trabajo extraordinario en el campo de la energía. Está además la kilocaloría, caloría grande, o Caloría (con C mayúscula), que es igual a 1 000 calorías pequeñas. Es necesario aclarar, asimismo, que ésta es la unidad que se utiliza sin conocimiento al hablar del valor calórico de los alimentos en la vida diaria.
EN QUÉ SE "UTILIZA" LA ENERGÍA
Existe aún cierta confusión en cuanto a la energía, y tiene que ver precisamente con los términos que se emplean para expresar que en tal o cual proceso "interviene" la energía, se "utiliza", o "se gasta". Es de gran importancia señalar que hay una ley (la cual corresponde a una realidad) que establece que la energía de un sistema no se crea ni se destruye, sino que se transforma. Tal vez con un ejemplo se pueda exponer con mayor claridad el asunto: si un coche gasta tal o cual cantidad de gasolina para subir con un determinado número de pasajeros a una montaña, lo que sucede es lo siguiente:
1. La gasolina, que es un compuesto formado por carbono e hidrógeno, contiene energía química en su molécula, que hace millones de años resultó de la transformación de la energía luminosa del Sol en la energía de los enlaces químicos de este compuesto.
2. Al quemarse esta sustancia, lo que realmente sucede es la combinación de sus elementos con el oxígeno del aire, para dar como resultado la siguiente reacción:
C10H24 + 16 O210 CO2 + 12 H2O.
Pero esta ecuación sólo muestra la transformación de los materiales; sabemos, por otra parte, que tiene un componente muy grande de energía. Si la reacción se produce quemando la gasolina en un espacio abierto, esa energía se percibe claramente en forma de calor. Si usamos la gasolina para mover un motor de combustión interna, lo que de hecho sucede es que la energía se transforma, por una parte, en energía mecánica que mueve o provoca el desplazamiento de los pistones, pero irremediablemente hay una parte de ella que de cualquier manera se convierte en calor (por ello los motores necesitan un dispositivo de enfriamiento para liberar la gran cantidad de calor producida).
Si al final del proceso hacemos cálculos, nos daremos cuenta de que, de la energía contenida en los enlaces de la gasolina, en términos estrictos, una parte no ha sido "utilizada", sino que se ha transformado en energía mecánica para subir el coche a la montaña, y otra no se ha "liberado", ni ha desaparecido, sino que se ha transformado en calor.
La energía eléctrica contenida en un acumulador eléctrico, hablando en términos estrictos, no se utiliza" para mover el motor de arranque de un coche, sino que se transforma en energía mecánica a través del motor de arranque, y mueve al motor del coche.
Tal vez con estos ejemplos quede claro que en la naturaleza nunca se puede hablar ni de utilización ni de gasto de energía, sino de su transformación de unas formas en otras; sin embargo, en el uso diario del lenguaje son habituales dichos términos, y seguiremos la misma costumbre en este libro, en donde se habla de gasto, de utilización y de liberación de energía. Son, pues, muchísimas las formas que puede tomar, y de ellas enlistamos algunas a continuación:
Energía química
Energía eléctrica
Energía mecánica
Energía caloríficaLos seres vivos manifiestan ser transformadores de energía de diferentes maneras. Una muy clara es la capacidad que tienen para generar calor, pero ésta no es sino el resultado de muchas otras formas en las que, como en la combustión de la gasolina por los coches, "sobra", o se "libera" energía, que se transforma en calor durante muchos procesos. Otra de las manifestaciones claras de la capacidad de transformar energía que tienen los seres vivos es el movimiento; independientemente de si se conocen o no los mecanismos, es clara una conexión entre la ingestión de los alimentos y el movimiento. Los mecanismos son muy complicados, pero a fin de cuentas el movimiento, que es una forma de trabajo, representa la transformación de la energía química contenida en los enlaces moleculares de dos alimentos, en energía mecánica.
Hay transformaciones de energía en funciones que son aún más complejas que el movimiento mismo, pero que podemos percibir con claridad; es el caso de muchas de las funciones realizadas por algunos de nuestros órganos, como el corazón, el intestino, nuestro aparato respiratorío, etc. Hay otras más en las cuales no se observa movimiento, y que sin embargo también implican transformaciones de energía; tales son el funcionamiento de nuestros riñones, nuestras glándulas y otros órganos que, no por no tener movimiento significa que no requieran la transformación constante de energía.
Tal vez las funciones más complicadas sean aquéllas realizadas por el sistema nervioso, que en última instancia comprenden al pensamiento mismo. El hecho de que nuestras células nerviosas sean inmóviles no quiere decir que no requieran energía. Poseen una serie enorme de funciones que podríamos considerar parciales, pero cada una de las cuales requiere de energía, o dicho de manera más correcta, implica transformaciones de energía.
Otra de las transformaciones de energía que no vemos, pero que se realiza con gran intensidad en los organismos vivos, está dada por el movimiento de sustancias a través de membranas. Uno de los casos obvios es el paso de los materiales nutritivos por la pared del intestino para ser aprovechados por nosotros; pero hay también movimientos de esas sustancias al interior de las células. Todas ellas deben nutrirse y desechar aquello que no quieren o no necesitan. Es necesario que los materiales alimenticios, el agua y las sales minerales entren en nuestro organismo, pero éste es sólo el primer paso hacia donde en última instancia realmente se les utiliza: las diferentes células de nuestro organismo. Además, durante el aprovechamiento de muchos materiales y durante la realización de muchísimas funciones, se producen también sustancias que deben ser expulsadas de las células, y la mayor parte de sus movimientos involucra cambios de energía de unas formas a otras. Todos los organismos utilizan buena parte de la energía de los materiales de que se alimentan en este proceso de transporte continuo y muy activo de sustancias de unos lugares a otros y hacia dentro o hacia fuera de las células.
Por último, existe otra transformación o uso de energía de gran importancia en los seres vivos. Se trata de la renovación constante de las moléculas que los componen. Nosotros no apreciamos ningún cambio aparente de un día a otro en nuestro perro, o en nuestro gato, ni en nuestros amigos. Sin embargo, estudios cuidadosos han demostrado que las moléculas de los organismos vivos se están renovando; y aunque unas lo hacen con mayor velocidad que otras, al fin de cuentas todas se cambian constantemente por moléculas nuevas. Aun las moléculas que forman parte de nuestro cerebro, y que se nos antojarían inmutables, están renovándose continuamente.
Pero la renovación significa por una parte que las moléculas grandes o complejas deben ser destruidas, o convertidas en componentes más sencillos. Lo habitual es entonces que, al romperlas, la energía química de sus enlaces se transforme en calor, al menos en su mayor parte. La otra fase de la renovación, la síntesis (formación) de las moléculas nuevas, requiere de otra forma de energía diferente al calor, la cual debe provenir de los alimentos y sus transformaciones. Otro de los grandes capítulos de las transformaciones de la energía es la liberación de calor al romperse los enlaces de moléculas grandes, y el ingreso de otras formas de energía para la producción o síntesis de unidades pequeñas, a fin de formar las moléculas nuevas que han de reemplazar a las destruidas.
En suma, las grandes funciones en que se realizan las principales transformaciones de energía en los seres vivos, al menos desde el punto de vista de su cantidad, son:
a) el movimiento,
b) el transporte de nutrientes, y
c) la síntesis de nuevas moléculas.Asimismo, es necesario insistir en que en toda transformación de energía hay una parte de ella que necesariamente se convierte en calor.
La gran fuente de energía de la que dependemos todos los seres vivos es el Sol; desde la educación primaria se nos dice que hay un ciclo de energía y de materiales entre los animales y las plantas, y que está alimentado por la energía del Sol. Este concepto tan simple es sin embargo válido y cierto; sólo que hay que tomarlo con un poco más de propiedad. No es que las plantas "utilicen" la energía del Sol para fabricar ciertas moléculas simples; la verdad es que las plantas toman una pequeña parte de la energía luminosa que llega del Sol a la Tierra y la transforman en la energía química de diferentes sustancias. El caso más simple es el de los azúcares, que se forman según la reacción:
6CO2 + 6H2O C6H12O6.
Pero la energía que contienen seis moléculas de bióxido de carbono y seis moléculas de agua es mucho menor que la de una molécula de glucosa. Por consiguiente, en el proceso de la fotosíntesis se requiere, hay que "utilizar", o es necesario transformar una parte de la energía luminosa que viene del Sol en la energía química que mantiene unidos los átomos en ese azúcar. Esto sucede en un proceso bastante complicado, pero cuyos detalles se conocen en buena parte, tanto en las plantas como en ciertas bacterias fotosintéticas principalmente (véase el capítulo II). En el resto de los capítulos de este librito se habrán de esbozar de manera sencilla los mecanismos implicados en dicha transformación energética.
Esta situación convierte entonces a los vegetales en los organismos más importantes e imprescindibles en el camino de la utilización de la energía del Sol, como transformadores de la energía luminosa en energía de enlaces químicos, fundamentalmente de la glucosa. Además, las plantas también pueden elaborar a partir de la glucosa otros azúcares, así como grasas, y también proteínas, o al menos los componentes de éstas, los aminoácidos. Por otra parte, al mismo tiempo que las plantas nos ofrecen la energía del Sol ya transformada en una especie que podemos aprovechar, la de los enlaces de la glucosa y otras sustancias nos proporciona simultáneamente materiales que también nos sirven para esa constante renovación de todas nuestras moléculas, que ya hemos mencionado. Las plantas, asimismo, producen constantemente el oxígeno indispensable para la vida, según se le conoce hoy en día.
Una vez capturada o transformada la energía del Sol en la de los enlaces de los azúcares y otras sustancias, son los animales los que las ingieren. En ellos, el proceso es un tanto al contrario; ahora se trata de convertir esa energía de los enlaces de las moléculas, proveniente de la luz del Sol, en otra que puedan aprovechar sus células y tejidos a fin de funcionar. Lo que hacen los animales es transformar de nuevo la energía de los enlaces químicos de los azúcares y otras sustancias, en una forma de energía directamente aprovechable por distintos sistemas. Para ello realizan, vista de manera general, la reacción inversa a la que realizaron las plantas:
C6H12O6 + 6O2 6CO2 + 6H2O.
Pero en el proceso, la energía contenida en los enlaces debe pasar a otra forma que las células puedan utilizar. De la misma manera que un motor de automóvil no puede funcionar si se le da leña o carbón, una fibra muscular no se puede contraer si le agregamos glucosa, aunque ésta contenga energía en los enlaces de sus átomos. Las células deben convertir esa energía en otra forma directamente aprovechable por la fibra muscular, y para eso se utiliza una sustancia llamada ADP, o adenosín difosfato, que en su estructura contiene dos fosfatos, como se muestra en el capitulo III. Esta molécula se puede convertir en ATP, adenosintrifosfato, que entonces contiene tres fosfatos, como resultado de un complicado proceso que se describirá también en el capítulo III, y que de hecho supone que la energía de los enlaces de la glucosa se convierta en energía de los enlaces del ATP. Sí ahora agregamos ATP a una fibra muscular, ésta se contrae, pero al mismo tiempo rompe el enlace que se había formado y nos lleva de nuevo a ADP y un fosfato libre.
Esta reacción que tiene lugar durante la contracción de las fibras musculares ocurre en muchos otros procesos que requieren energía. Nunca es directamente la de los enlaces de los azúcares la que se utiliza. El combustible "universal" de las transformaciones de la energía en los seres vivos es el ATP, y se puede utilizar para muchísimos procesos que hemos mencionado antes.
Es natural que nos preguntemos ¿de dónde ha resultado el conocimiento sobre las transformaciones de la energía que tienen lugar en los seres vivos? De hecho, una de las primeras personas que se hizo ya en serio esa pregunta fue el extraordinario sabio Lavoisier, quien a finales del siglo
XVIII
observó que si se quemaba glucosa en presencia de aire, se producía calor. Pensando que comemos, o que podemos comer glucosa, y que nuestro organismo produce calor, este sabio imaginó y propuso luego que en nuestro organismo también se utiliza la glucosa por un camino que lleva finalmente a su oxidación y a la producción de bióxido de carbono y agua, pero que la energía del azúcar es de alguna forma aprovechada, o transformada, en alguna otra forma de energía aprovechable por el organismo. Es de esperarse que este brillante sabio no tuviera, sin embargo, dada la época en que vivió, la menor idea de los mecanismos que intervienen en las transformaciones de energía en los seres vivos.Hacia principios del siglo
XX
se iniciaron apenas los estudios tendientes a entender los mecanismos mediante los cuales las células aprovechan la glucosa. Una de las grandes incógnitas que surgió fue la referente al mecanismo mediante el cual un microbio, la levadura, transformaba la glucosa en alcohol. Esta inquietud era en cierta forma natural, dado que dicho microorganismo ha tenido desde tiempos antiguos una gran importancia para la humanidad en la elaboración de dos productos extraordinarios: el pan y el vino.A finales de 1933, un alemán, Fritz Lohman, descubrió el adenosintrifosfato (ATP); pero en ese momento no se tuvo idea de su importancia como la "moneda" energética de las células ni de su distribución universal en los seres vivos, sino hasta cinco o diez años después de su descubrimiento. Hay que tener en cuenta que el mundo científico de aquellos años era sumamente reducido.
Otro de los grandes descubrimientos fue el de la molécula conocida como nicotín adenín dinucleótido (NAD) y la defnición de su estructura por el científico alemán Otto Warburg. A lo largo de varios años se aclaró también que esta molécula participa además en las transformaciones de energía de los seres vivos, en un proceso conocido como óxido-reducción, semejante a aquel por el cual los acumuladores de corriente o las pilas eléctricas producen electricidad, y que es un proceso en el cual está implicada una cantidad importante de energía. Se supo así que hay un esquema general, el cual se muestra en la figura 2, que es válido para casi todos los organismos vivos, y según el cual, cuando las moléculas como la glucosa, los ácidos grasos o las proteínas se degradan, se produce energía en la forma de ATP, o como el llamado poder reductor, que no es otra cosa que moléculas como el NAD, que pueden reducirse con la incorporación de átomos de hidrógeno para dar lo que se identifica en la jerga bioquímica como NADH y reoxidarse cuando estos hidrogenos se pierden. Ésta es otra forma de transformar energía.
Para tener una idea de la energía que traen consigo estos cambios de óxido-reducción, baste saber que si dos hidrogenos (en realidad los electrones de estos hidrógenos) del NADH pasan hasta el oxígeno, la cantidad de energía que resulta es de aproximadamente 56 kilocalorías por cada mol. El mol es una unidad de rnedida igual al peso molecular de un compuesto tomado en gramos. Para el ATP, la energía de cada enlace de fosfato es de sólo 7.5 kilocalorías.
Resulta así un esquema metabólico que ha sido integrado por miles de investigadores a lo largo de varios decenios, y el cual permite tener una idea bastante cercana de los cambios de energía que se dan durante las transformaciones de los diferentes metabolitos en las células o, para ser más precisos, en las mitocondrias.
Aunque desde hace mucho tiempo se había descrito a las mitocondrias como pequeños organitos u "organelos" de las células, y se les había observado al microscopio, era prácticamente nulo el conocimiento que se tenía acerca de sus funciones. En 1948, dos investigadores, Schneider y Hogeboom, describieron un método que se antojaba extraordinario, y que abrió enormes posibilidades para la investigación en el mundo de la bioenergética: mediante el uso de una solución adecuada de azúcar común, sacarosa, se podía moler el hígado de una rata de laboratorio preservando la estructura y la función de las mitocondrias, y luego, por centrifugación, separarlas de los otros componentes celulares. Este procedimiento, que en la actualidad se antoja trivial, fue un avance trascendental en la investigación de las transformaciones de la energía. Aunque no se sabía que estos organelos celulares eran los responsables de las transformaciones de la energía, el hecho de tenerlos aislados ofreció a los científicos curiosos la posibilidad de estudiarlos y de definir sus funciones. Pronto (en unos dos decenios) se encontró que eran ellas las responsables de la respiración de las células (que es lo que realmente supone el consumo de oxígeno) y, más aún, que al mismo tiempo que respiraban, realizaban la síntesis del ATP a partir del ADP y el fosfato inorgánico. Se descubrieron los componentes moleculares del sistema que transporta los electrones provenientes originalmente del NADH hacia el exígeno, y los mecanismos generales de formación del agua en este complicado proceso. Sin embargo, el mecanismo de la transformación de la energía propiamente dicho se resistió durante muchos años más a ser aclarado, pese a que fue notable el aumento que hubo de grupos de investigadores interesados en el problema.
De la misma forma, aislaron los cloroplastos de las plantas, que son el equivalente de las mitocondrias de las células animales, y se demostró que estos otros "organelos" son los responsables, y el sitio en el cual se lleva a cabo, de la "captura" de la energía del Sol y los procesos que la acompañan, y que llevan finalmente a la síntesis de la glucosa y otros azúcares utilizando bióxido de carbono, agua y energía luminosa.
Los grupos de investigación acumularon gran cantidad de información, pero muchos de los datos permanecían sin explicación. No fue sino hasta 1961 en que el genio extraordinario de un inglés, Peter Mitchell, integró los conocimientos que se habían acumulado para postular mecanismos generales y así abrir la posibilidad de numerosas investigaciones en todo el mundo, las cuales, en conjunto, han llevado a explicar cómo, de formas diversas, se transforma la energía en los seres vivos conforme a una cadena de sucesos de gran complejidad. Uno de sus grandes méritos fue no sólo proponer, sino haber demostrado la universalidad de los mecanismos generales de transformación de la energía tanto en la mitocondrias y los cloroplastos como en bacterias y en todo organismo vivo, en cada caso con sus particularidades.
Este libro es un intento de presentar al público en general una visión de tan interesante tema, y es propósito de los autores hacerlo en una forma sencilla y clara. En los siguientes capítulos se describirá primero la forma de las transformaciones de la energía luminosa del Sol en otras formas de energía aprovechables, e incluso almacenabíes por las células y tejidos de las plantas, para luego exponer la manera en que va cambiando, la cual resulta en los enlaces químicos de los azúcares en otras formas de energía también aprovechables, principalmente por los animales.
En otros capítulos haremos una descripción de la transformación o aprovechamiento de la energía en otras formas que, integradas, dan finalmente lugar a la vida misma, con el movimiento de los animales, a las diferentes funciones vitales y, en el caso del hombre, a las del sistema nervioso central, que incluyen además de complicadísimos sistemas de control y comunicación entre las células, los mecanismos del pensamiento mismo. Es posible, en última instancia, concebir la vida como una constante transformación de la energía en diferentes formas a través de millones de procesos interconectados. Como casi cualquier otro proceso natural, la vida implica también cambios continuos de las formas de la energía, que la mantienen y sin los cuales necesariamente deja de existir.
![]()